BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 38707535)

  • 1. A contrastive learning approach to integrate spatial transcriptomics and histological images.
    Lin Y; Liang Y; Wang D; Chang Y; Ma Q; Wang Y; He F; Xu D
    Comput Struct Biotechnol J; 2024 Dec; 23():1786-1795. PubMed ID: 38707535
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A multi-view graph contrastive learning framework for deciphering spatially resolved transcriptomics data.
    Zhang L; Liang S; Wan L
    Brief Bioinform; 2024 May; 25(4):. PubMed ID: 38801701
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spatially contrastive variational autoencoder for deciphering tissue heterogeneity from spatially resolved transcriptomics.
    Hu Y; Xiao K; Yang H; Liu X; Zhang C; Shi Q
    Brief Bioinform; 2024 Jan; 25(2):. PubMed ID: 38324623
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spatial domain detection using contrastive self-supervised learning for spatial multi-omics technologies.
    Yao J; Yu J; Caffo B; Page SC; Martinowich K; Hicks SC
    bioRxiv; 2024 Feb; ():. PubMed ID: 38352580
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Integrating multi-modal information to detect spatial domains of spatial transcriptomics by graph attention network.
    Huo Y; Guo Y; Wang J; Xue H; Feng Y; Chen W; Li X
    J Genet Genomics; 2023 Sep; 50(9):720-733. PubMed ID: 37356752
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sampling and ranking spatial transcriptomics data embeddings to identify tissue architecture.
    Lin Y; Wang Y; Liang Y; Yu Y; Li J; Ma Q; He F; Xu D
    Front Genet; 2022; 13():912813. PubMed ID: 36035139
    [TBL] [Abstract][Full Text] [Related]  

  • 7. STGNNks: Identifying cell types in spatial transcriptomics data based on graph neural network, denoising auto-encoder, and k-sums clustering.
    Peng L; He X; Peng X; Li Z; Zhang L
    Comput Biol Med; 2023 Nov; 166():107440. PubMed ID: 37738898
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identifying spatial domain by adapting transcriptomics with histology through contrastive learning.
    Zeng Y; Yin R; Luo M; Chen J; Pan Z; Lu Y; Yu W; Yang Y
    Brief Bioinform; 2023 Mar; 24(2):. PubMed ID: 36781228
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identifying spatial domains of spatially resolved transcriptomics via multi-view graph convolutional networks.
    Shi X; Zhu J; Long Y; Liang C
    Brief Bioinform; 2023 Sep; 24(5):. PubMed ID: 37544658
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multi-modal domain adaptation for revealing spatial functional landscape from spatially resolved transcriptomics.
    Wang L; Hu Y; Xiao K; Zhang C; Shi Q; Chen L
    Brief Bioinform; 2024 May; 25(4):. PubMed ID: 38819253
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Deciphering tissue heterogeneity from spatially resolved transcriptomics by the autoencoder-assisted graph convolutional neural network.
    Li X; Huang W; Xu X; Zhang HY; Shi Q
    Front Genet; 2023; 14():1202409. PubMed ID: 37303949
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Deciphering spatial domains from spatially resolved transcriptomics with an adaptive graph attention auto-encoder.
    Dong K; Zhang S
    Nat Commun; 2022 Apr; 13(1):1739. PubMed ID: 35365632
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Define and visualize pathological architectures of human tissues from spatially resolved transcriptomics using deep learning.
    Chang Y; He F; Wang J; Chen S; Li J; Liu J; Yu Y; Su L; Ma A; Allen C; Lin Y; Sun S; Liu B; Javier Otero J; Chung D; Fu H; Li Z; Xu D; Ma Q
    Comput Struct Biotechnol J; 2022; 20():4600-4617. PubMed ID: 36090815
    [TBL] [Abstract][Full Text] [Related]  

  • 14. ConSpaS: a contrastive learning framework for identifying spatial domains by integrating local and global similarities.
    Wu S; Qiu Y; Cheng X
    Brief Bioinform; 2023 Sep; 24(6):. PubMed ID: 37965808
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Graph deep learning enabled spatial domains identification for spatial transcriptomics.
    Liu T; Fang ZY; Li X; Zhang LN; Cao DS; Yin MZ
    Brief Bioinform; 2023 May; 24(3):. PubMed ID: 37080761
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spatial Omics Driven Crossmodal Pretraining Applied to Graph-based Deep Learning for Cancer Pathology Analysis.
    Azher Z; Fatemi M; Lu Y; Srinivasan G; Diallo A; Christensen B; Salas L; Kolling F; Perreard L; Palisoul S; Vaickus L; Levy J
    bioRxiv; 2023 Jul; ():. PubMed ID: 37577686
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spatially informed clustering, integration, and deconvolution of spatial transcriptomics with GraphST.
    Long Y; Ang KS; Li M; Chong KLK; Sethi R; Zhong C; Xu H; Ong Z; Sachaphibulkij K; Chen A; Zeng L; Fu H; Wu M; Lim LHK; Liu L; Chen J
    Nat Commun; 2023 Mar; 14(1):1155. PubMed ID: 36859400
    [TBL] [Abstract][Full Text] [Related]  

  • 18. SGCAST: symmetric graph convolutional auto-encoder for scalable and accurate study of spatial transcriptomics.
    Li J; Wang J; Lin Z
    Brief Bioinform; 2023 Nov; 25(1):. PubMed ID: 38171928
    [TBL] [Abstract][Full Text] [Related]  

  • 19. stAA: adversarial graph autoencoder for spatial clustering task of spatially resolved transcriptomics.
    Fang Z; Liu T; Zheng R; A J; Yin M; Li M
    Brief Bioinform; 2023 Nov; 25(1):. PubMed ID: 38189544
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spatial Omics Driven Crossmodal Pretraining Applied to Graph-based Deep Learning for Cancer Pathology Analysis.
    Azher ZL; Fatemi M; Lu Y; Srinivasan G; Diallo AB; Christensen BC; Salas LA; Kolling FW; Perreard L; Palisoul SM; Vaickus LJ; Levy JJ
    Pac Symp Biocomput; 2024; 29():464-476. PubMed ID: 38160300
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.