These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 38708056)

  • 1. Facilitating stable gene integration expression and copy number amplification in
    Guo H; Tian R; Wu Y; Lv X; Li J; Liu L; Du G; Chen J; Liu Y
    Synth Syst Biotechnol; 2024 Sep; 9(3):577-585. PubMed ID: 38708056
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modular pathway engineering of key carbon-precursor supply-pathways for improved N-acetylneuraminic acid production in Bacillus subtilis.
    Zhang X; Liu Y; Liu L; Wang M; Li J; Du G; Chen J
    Biotechnol Bioeng; 2018 Sep; 115(9):2217-2231. PubMed ID: 29896807
    [TBL] [Abstract][Full Text] [Related]  

  • 3. CopySwitch-
    Nadler F; Bracharz F; Kabisch J
    Front Bioeng Biotechnol; 2018; 6():207. PubMed ID: 30671432
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cell-free synthesis system-assisted pathway bottleneck diagnosis and engineering in
    Tian R; Wang M; Shi J; Qin X; Guo H; Jia X; Li J; Liu L; Du G; Chen J; Liu Y
    Synth Syst Biotechnol; 2020 Sep; 5(3):131-136. PubMed ID: 32637666
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An inducible recA expression Bacillus subtilis genome vector for stable manipulation of large DNA fragments.
    Ogawa T; Iwata T; Kaneko S; Itaya M; Hirota J
    BMC Genomics; 2015 Mar; 16(1):209. PubMed ID: 25879542
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fragment Exchange Plasmid Tools for CRISPR/Cas9-Mediated Gene Integration and Protease Production in Bacillus subtilis.
    García-Moyano A; Larsen Ø; Gaykawad S; Christakou E; Boccadoro C; Puntervoll P; Bjerga GEK
    Appl Environ Microbiol; 2020 Dec; 87(1):. PubMed ID: 33097498
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Engineering of Synthetic Multiplexed Pathways for High-Level
    Zhang X; Wang C; Lv X; Liu L; Li J; Du G; Wang M; Liu Y
    J Agric Food Chem; 2021 Dec; 69(49):14868-14877. PubMed ID: 34851104
    [No Abstract]   [Full Text] [Related]  

  • 8. Integrative bacterial artificial chromosomes for DNA integration into the Bacillus subtilis chromosome.
    Juhas M; Ajioka JW
    J Microbiol Methods; 2016 Jun; 125():1-7. PubMed ID: 27033694
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synthetic N-terminal coding sequences for fine-tuning gene expression and metabolic engineering in Bacillus subtilis.
    Tian R; Liu Y; Chen J; Li J; Liu L; Du G; Chen J
    Metab Eng; 2019 Sep; 55():131-141. PubMed ID: 31288083
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Development of biosensors highly responsive to
    Sun J; Cao Y; Lü X; Li J; Liu L; DU G; Chen J; Liu Y
    Sheng Wu Gong Cheng Xue Bao; 2023 Jun; 39(5):2502-2516. PubMed ID: 37401606
    [No Abstract]   [Full Text] [Related]  

  • 11. Inducible Population Quality Control of Engineered
    Cao Y; Tian R; Lv X; Li J; Liu L; Du G; Chen J; Liu Y
    ACS Synth Biol; 2021 Sep; 10(9):2197-2209. PubMed ID: 34404207
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pathway Engineering of Bacillus subtilis for Enhanced N-Acetylneuraminic Acid Production via Whole-Cell Biocatalysis.
    Zhao L; Tian R; Shen Q; Liu Y; Liu L; Li J; Du G
    Biotechnol J; 2019 Jul; 14(7):e1800682. PubMed ID: 30925011
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Programmable CRISPR/Cas9 Toolkit Improves Lycopene Production in Bacillus subtilis.
    Liu Y; Cheng H; Li H; Zhang Y; Wang M
    Appl Environ Microbiol; 2023 Jun; 89(6):e0023023. PubMed ID: 37272803
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Titrating bacterial growth and chemical biosynthesis for efficient N-acetylglucosamine and N-acetylneuraminic acid bioproduction.
    Tian R; Liu Y; Cao Y; Zhang Z; Li J; Liu L; Du G; Chen J
    Nat Commun; 2020 Oct; 11(1):5078. PubMed ID: 33033266
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development and optimization of N-acetylneuraminic acid biosensors in Bacillus subtilis.
    Zhang X; Cao Y; Liu Y; Liu L; Li J; Du G; Chen J
    Biotechnol Appl Biochem; 2020 Jul; 67(4):693-705. PubMed ID: 32400021
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cloning, characterization, and multiple chromosomal integration of a Bacillus alkaline protease gene.
    van der Laan JC; Gerritse G; Mulleners LJ; van der Hoek RA; Quax WJ
    Appl Environ Microbiol; 1991 Apr; 57(4):901-9. PubMed ID: 2059048
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pulse-field gel-electrophoretic analysis of the amplification and copy-number stability of an integrational plasmid in Bacillus subtilis.
    Vázquez-Cruz C; Ochoa-Sánchez JC; Olmedo-Alvarez G
    Appl Microbiol Biotechnol; 1996 Aug; 46(1):55-60. PubMed ID: 8987535
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Metabolic Engineering of
    Liu C; Lv X; Li J; Liu L; Du G; Liu Y
    J Agric Food Chem; 2022 Dec; 70(50):15859-15868. PubMed ID: 36475707
    [No Abstract]   [Full Text] [Related]  

  • 19. Intramolecular homologous recombination in Bacillus subtilis 168.
    Alonso JC; Lüder G; Trautner TA
    Mol Gen Genet; 1992 Dec; 236(1):60-4. PubMed ID: 1494351
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthetic Biology Toolbox and Chassis Development in Bacillus subtilis.
    Liu Y; Liu L; Li J; Du G; Chen J
    Trends Biotechnol; 2019 May; 37(5):548-562. PubMed ID: 30446263
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.