These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
138 related articles for article (PubMed ID: 38708194)
1. Real-Time Temperature Monitoring of Lithium Batteries Based on Ultrasonic Technology. Cheng Y; Zhao S; Shen G; Zhang S; Yao P ACS Omega; 2024 Apr; 9(17):19517-19524. PubMed ID: 38708194 [TBL] [Abstract][Full Text] [Related]
2. Analysis of heat generation of lithium ion rechargeable batteries used in implantable battery systems for driving undulation pump ventricular assist device. Okamoto E; Nakamura M; Akasaka Y; Inoue Y; Abe Y; Chinzei T; Saito I; Isoyama T; Mochizuki S; Imachi K; Mitamura Y Artif Organs; 2007 Jul; 31(7):538-41. PubMed ID: 17584478 [TBL] [Abstract][Full Text] [Related]
3. Characterization of Temperature and Strain Changes in Lithium-Ion Batteries Based on a Hinged Differential Lever Sensitization Fiber Bragg Grating Strain-Temperature Simultaneous-Measurement Sensor. Li M; Chen W; Shen Z; Wang Z; Ming Z; Wang C; Tian H; Sang T; Song R Sensors (Basel); 2024 Jan; 24(2):. PubMed ID: 38257505 [TBL] [Abstract][Full Text] [Related]
4. The Regulating Role of Carbon Nanotubes and Graphene in Lithium-Ion and Lithium-Sulfur Batteries. Fang R; Chen K; Yin L; Sun Z; Li F; Cheng HM Adv Mater; 2019 Mar; 31(9):e1800863. PubMed ID: 29984484 [TBL] [Abstract][Full Text] [Related]
5. Thermal explosion hazards on 18650 lithium ion batteries with a VSP2 adiabatic calorimeter. Jhu CY; Wang YW; Shu CM; Chang JC; Wu HC J Hazard Mater; 2011 Aug; 192(1):99-107. PubMed ID: 21612866 [TBL] [Abstract][Full Text] [Related]
6. Comparison of the state of Lithium-Sulphur and lithium-ion batteries applied to electromobility. Benveniste G; Rallo H; Canals Casals L; Merino A; Amante B J Environ Manage; 2018 Nov; 226():1-12. PubMed ID: 30103198 [TBL] [Abstract][Full Text] [Related]
7. Three-dimensional electrochemical-magnetic-thermal coupling model for lithium-ion batteries and its application in battery health monitoring and fault diagnosis. Bai X; Peng D; Chen Y; Ma C; Qu W; Liu S; Luo L Sci Rep; 2024 May; 14(1):10802. PubMed ID: 38734833 [TBL] [Abstract][Full Text] [Related]
8. Bending-Tolerant Anodes for Lithium-Metal Batteries. Wang A; Tang S; Kong D; Liu S; Chiou K; Zhi L; Huang J; Xia YY; Luo J Adv Mater; 2018 Jan; 30(1):. PubMed ID: 29125657 [TBL] [Abstract][Full Text] [Related]
9. Development of 2-in-1 Sensors for the Safety Assessment of Lithium-Ion Batteries via Early Detection of Vapors Produced by Electrolyte Solvents. Lupan O; Magariu N; Santos-Carballal D; Ababii N; Offermann J; Pooker P; Hansen S; Siebert L; de Leeuw NH; Adelung R ACS Appl Mater Interfaces; 2023 Jun; 15(22):27340-27356. PubMed ID: 37233739 [TBL] [Abstract][Full Text] [Related]
10. Degradation of organic pollutants accompanied by the ultrasonic separation of the spent lithium-ion battery cathode materials. Huang Y; Sun M; Xu C; Hu H; Zhu S; He W Waste Manag Res; 2024 Jan; 42(1):74-80. PubMed ID: 37102342 [TBL] [Abstract][Full Text] [Related]
11. Design and On-Field Validation of an Embedded System for Monitoring Second-Life Electric Vehicle Lithium-Ion Batteries. Castillo-Martínez DH; Rodríguez-Rodríguez AJ; Soto A; Berrueta A; Vargas-Requena DT; Matias IR; Sanchis P; Ursúa A; Rodríguez-Rodríguez WE Sensors (Basel); 2022 Aug; 22(17):. PubMed ID: 36080844 [TBL] [Abstract][Full Text] [Related]
12. Scalable Production of Freestanding Few-Layer β Lin H; Shi H; Wang Z; Mu Y; Li S; Zhao J; Guo J; Yang B; Wu ZS; Liu F ACS Nano; 2021 Nov; 15(11):17327-17336. PubMed ID: 34549941 [TBL] [Abstract][Full Text] [Related]
13. Single-ion polymer electrolyte membranes enable lithium-ion batteries with a broad operating temperature range. Cai W; Zhang Y; Li J; Sun Y; Cheng H ChemSusChem; 2014 Apr; 7(4):1063-7. PubMed ID: 24623577 [TBL] [Abstract][Full Text] [Related]
14. Ultrasound-assisted leaching of cobalt and lithium from spent lithium-ion batteries. Jiang F; Chen Y; Ju S; Zhu Q; Zhang L; Peng J; Wang X; Miller JD Ultrason Sonochem; 2018 Nov; 48():88-95. PubMed ID: 30080590 [TBL] [Abstract][Full Text] [Related]
15. A Star-Structured Polymer Electrolyte for Low-Temperature Solid-State Lithium Batteries. Zhang X; Cui X; Li Y; Yang J; Pan Q Small Methods; 2024 Apr; ():e2400356. PubMed ID: 38682271 [TBL] [Abstract][Full Text] [Related]
16. Amorphous boron nanorod as an anode material for lithium-ion batteries at room temperature. Deng C; Lau ML; Barkholtz HM; Xu H; Parrish R; Xu MO; Xu T; Liu Y; Wang H; Connell JG; Smith KA; Xiong H Nanoscale; 2017 Aug; 9(30):10757-10763. PubMed ID: 28715023 [TBL] [Abstract][Full Text] [Related]
17. Electrolyte Design for Lithium Metal Anode-Based Batteries Toward Extreme Temperature Application. Luo D; Li M; Zheng Y; Ma Q; Gao R; Zhang Z; Dou H; Wen G; Shui L; Yu A; Wang X; Chen Z Adv Sci (Weinh); 2021 Sep; 8(18):e2101051. PubMed ID: 34272930 [TBL] [Abstract][Full Text] [Related]
18. Boosting Lithium-Ion Transport Kinetics by Increasing the Local Lithium-Ion Concentration Gradient in Composite Anodes of Lithium-Ion Batteries. Wu W; Sun Z; He Q; Shi X; Ge X; Cheng J; Wang J; Zhang Z ACS Appl Mater Interfaces; 2021 Mar; 13(12):14752-14758. PubMed ID: 33729763 [TBL] [Abstract][Full Text] [Related]
19. Advances in Lithium-Sulfur Batteries: From Academic Research to Commercial Viability. Chen Y; Wang T; Tian H; Su D; Zhang Q; Wang G Adv Mater; 2021 Jul; 33(29):e2003666. PubMed ID: 34096100 [TBL] [Abstract][Full Text] [Related]
20. Estimation of the critical external heat leading to the failure of lithium-ion batteries. Tang W; Tam WC; Yuan L; Dubaniewicz T; Thomas R; Soles J Appl Therm Eng; 2020 Oct; 179():. PubMed ID: 34434069 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]