These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 38708205)

  • 21. Promoting Rechargeable Batteries Operated at Low Temperature.
    Dong X; Wang YG; Xia Y
    Acc Chem Res; 2021 Oct; 54(20):3883-3894. PubMed ID: 34622652
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Electrochemical Performance of (MgCoNiZn)
    Lökçü E; Toparli Ç; Anik M
    ACS Appl Mater Interfaces; 2020 May; 12(21):23860-23866. PubMed ID: 32368889
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Na-Ion Battery Anodes: Materials and Electrochemistry.
    Luo W; Shen F; Bommier C; Zhu H; Ji X; Hu L
    Acc Chem Res; 2016 Feb; 49(2):231-40. PubMed ID: 26783764
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Investigation on electrochemical performance of striped, β12 and χ3 Borophene as anode materials for lithium-ion batteries.
    Karimzadeh S; Safaei B; Jen TC
    J Mol Graph Model; 2023 May; 120():108423. PubMed ID: 36731208
    [TBL] [Abstract][Full Text] [Related]  

  • 25. SiC Nanofibers as Long-Life Lithium-Ion Battery Anode Materials.
    Sun X; Shao C; Zhang F; Li Y; Wu QH; Yang Y
    Front Chem; 2018; 6():166. PubMed ID: 29868567
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Two-Dimensional Germanium Sulfide Nanosheets as an Ultra-Stable and High Capacity Anode for Lithium Ion Batteries.
    Wang B; Du W; Yang Y; Zhang Y; Zhang Q; Rui X; Geng H; Li CC
    Chemistry; 2020 May; 26(29):6554-6560. PubMed ID: 31562784
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Hierarchical Porous Intercalation-Type V
    Liu P; Zhu K; Xu Y; Bian K; Wang J; Tai G; Gao Y; Luo H; Lu L; Liu J
    Chemistry; 2017 Jun; 23(31):7538-7544. PubMed ID: 28370628
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Mesoporous Single-Crystal Lithium Titanate Enabling Fast-Charging Li-Ion Batteries.
    Jin X; Han Y; Zhang Z; Chen Y; Li J; Yang T; Wang X; Li W; Han X; Wang Z; Liu X; Jiao H; Ke X; Sui M; Cao R; Zhang G; Tang Y; Yan P; Jiao S
    Adv Mater; 2022 May; 34(18):e2109356. PubMed ID: 35262214
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A Fast-Charge Graphite Anode with a Li-Ion-Conductive, Electron/Solvent-Repelling Interface.
    Niu M; Dong L; Yue J; Li Y; Dong Y; Cheng S; Lv S; Zhu YH; Lei Z; Liang JY; Xin S; Yang C; Guo YG
    Angew Chem Int Ed Engl; 2024 May; 63(21):e202318663. PubMed ID: 38516922
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Mesoporous Li
    Li Q; Wei Q; Sheng J; Yan M; Zhou L; Luo W; Sun R; Mai L
    Adv Sci (Weinh); 2015 Dec; 2(12):1500284. PubMed ID: 27774378
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Recycled Graphite from Spent Lithium-Ion Batteries as a Conductive Framework Directly Applied in Red Phosphorus-Based Anodes.
    Huang H; Xie D; Zheng Z; Zeng Y; Xie S; Liu P; Zhang M; Wang S; Cheng F
    ACS Appl Mater Interfaces; 2023 Nov; ():. PubMed ID: 37913551
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Mg
    Zhu X; Fu Q; Tang L; Lin C; Xu J; Liang G; Li R; Luo L; Chen Y
    ACS Appl Mater Interfaces; 2018 Jul; 10(28):23711-23720. PubMed ID: 29975500
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Biphenylite as Anode Materials for Alkali Metal Ion Batteries with Self-Enhanced Storage Mechanism.
    Zou L; Jiang J; Guo H; Zuo G; Wu X; Lu N; Zhuo Z
    J Phys Chem Lett; 2023 Dec; 14(50):11513-11521. PubMed ID: 38090810
    [TBL] [Abstract][Full Text] [Related]  

  • 34. CoSe
    Yang J; Gao H; Men S; Shi Z; Lin Z; Kang X; Chen S
    Adv Sci (Weinh); 2018 Dec; 5(12):1800763. PubMed ID: 30581698
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Metal-organic-framework derived Zn-V-based oxide with charge storage mechanism as high-performance anode material to enhance lithium and sodium storage.
    Zhang X; Huang M; Peng Z; Sang X; Liu Y; Xu X; Xu Z; Zeb A; Wu Y; Lin X
    J Colloid Interface Sci; 2023 Dec; 652(Pt B):1394-1404. PubMed ID: 37659308
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Lithium aluminum hydride Li
    Liang C; Ye Z; Yang Y; Jing H; Wu H; Liu Y; Zhang X; Liu Z; Pan H
    Heliyon; 2023 Nov; 9(11):e21765. PubMed ID: 38027989
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Multiple Active Sites: Lithium Storage Mechanism of Cu-TCNQ as an Anode Material for Lithium-Ion Batteries.
    Meng C; Chen T; Fang C; Huang Y; Hu P; Tong Y; Bian T; Zhang J; Wang Z; Yuan A
    Chem Asian J; 2019 Dec; 14(23):4289-4295. PubMed ID: 31612624
    [TBL] [Abstract][Full Text] [Related]  

  • 38. NbO
    Chithaiah P; Sahoo RC; Seok JH; Lee SU; Matte HSSR; Rao CNR
    ACS Appl Mater Interfaces; 2023 Oct; 15(39):45868-45875. PubMed ID: 37738104
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Electrochemical Performance of Polymer-Derived Silicon-Oxycarbide/Graphene Nanoplatelet Composites for High-Performance Li-Ion Batteries.
    Jella G; Panda DK; Sapkota N; Greenough M; Datta SP; Rao AM; Sujith R; Bordia RK
    ACS Appl Mater Interfaces; 2023 Jun; 15(25):30039-30051. PubMed ID: 37309875
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Two-Dimensional Cr-Doped MoO
    Lu H; Yang C; Li C; Wang L; Wang H
    ACS Appl Mater Interfaces; 2019 Apr; 11(14):13405-13415. PubMed ID: 30893996
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.