These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 387083)

  • 21. Thiamine transport mutants of Saccharomyces cerevisiae.
    Iwashima A; Wakabayashi Y; Nose Y
    Biochim Biophys Acta; 1975 Dec; 413(2):243-7. PubMed ID: 172152
    [No Abstract]   [Full Text] [Related]  

  • 22. A constitutive thiamine metabolism mutation, thi80, causing reduced thiamine pyrophosphokinase activity in Saccharomyces cerevisiae.
    Nishimura H; Kawasaki Y; Nosaka K; Kaneko Y; Iwashima A
    J Bacteriol; 1991 Apr; 173(8):2716-9. PubMed ID: 1849514
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A possible role for acid phosphatase with thiamin-binding activity encoded by PHO3 in yeast.
    Nosaka K; Kaneko Y; Nishimura H; Iwashima A
    FEMS Microbiol Lett; 1989 Jul; 51(1):55-9. PubMed ID: 2676709
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Molecular biology of iron and zinc uptake in eukaryotes.
    Eide D
    Curr Opin Cell Biol; 1997 Aug; 9(4):573-7. PubMed ID: 9263657
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The Tim9p-Tim10p complex binds to the transmembrane domains of the ADP/ATP carrier.
    Curran SP; Leuenberger D; Oppliger W; Koehler CM
    EMBO J; 2002 Mar; 21(5):942-53. PubMed ID: 11867522
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Vps20p and Vta1p interact with Vps4p and function in multivesicular body sorting and endosomal transport in Saccharomyces cerevisiae.
    Yeo SC; Xu L; Ren J; Boulton VJ; Wagle MD; Liu C; Ren G; Wong P; Zahn R; Sasajala P; Yang H; Piper RC; Munn AL
    J Cell Sci; 2003 Oct; 116(Pt 19):3957-70. PubMed ID: 12953057
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Transport of phospholipids between subcellular membranes of wild-type yeast cells and of the phosphatidylinositol transfer protein-deficient strain Saccharomyces cerevisiae sec 14.
    Gnamusch E; Kalaus C; Hrastnik C; Paltauf F; Daum G
    Biochim Biophys Acta; 1992 Oct; 1111(1):120-6. PubMed ID: 1390857
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Inhibition of thiamine transport in baker's yeast by methylene blue.
    Iwashima A; Nishimura H; Nishino H
    Experientia; 1980 Oct; 36(10):1153-4. PubMed ID: 6998712
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effect of thiamin on cordycepin sensitivity in Saccharomyces cerevisiae.
    Iwashima A; Kawasaki Y; Nosaka K; Nishimura H
    FEBS Lett; 1992 Oct; 311(1):60-2. PubMed ID: 1397293
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Protein transport. A fusion of new ideas.
    Bock JB; Scheller RH
    Nature; 1997 May; 387(6629):133-5. PubMed ID: 9144278
    [No Abstract]   [Full Text] [Related]  

  • 31. Protein transport. Greasing the Golgi budding machine.
    Martin TF
    Nature; 1997 May; 387(6628):21-2. PubMed ID: 9139816
    [No Abstract]   [Full Text] [Related]  

  • 32. Thiamin-dependent transactivation activity of PDC2 in Saccharomyces cerevisiae.
    Nosaka K; Onozuka M; Konno H; Akaji K
    FEBS Lett; 2008 Dec; 582(29):3991-6. PubMed ID: 19013460
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The irreversibility of thiamin transport in Saccharomyces cerevisiae.
    Ruml T; Silhánková L; Rauch P
    Folia Microbiol (Praha); 1988; 33(5):372-6. PubMed ID: 3060416
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Cell biology: Countercurrents in lipid flow.
    Menon AK; Levine TP
    Nature; 2015 Sep; 525(7568):191-2. PubMed ID: 26354476
    [No Abstract]   [Full Text] [Related]  

  • 35. Active transport of dimethialium in Saccharomyces cerevisiae.
    Iwashima A; Nishimura H; Sempuku K
    Experientia; 1980 Apr; 36(4):385-6. PubMed ID: 6991270
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A positive regulatory gene, THI3, is required for thiamine metabolism in Saccharomyces cerevisiae.
    Nishimura H; Kawasaki Y; Kaneko Y; Nosaka K; Iwashima A
    J Bacteriol; 1992 Jul; 174(14):4701-6. PubMed ID: 1624458
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Resistance and adaptation to quinidine in Saccharomyces cerevisiae: role of QDR1 (YIL120w), encoding a plasma membrane transporter of the major facilitator superfamily required for multidrug resistance.
    Nunes PA; Tenreiro S; Sá-Correia I
    Antimicrob Agents Chemother; 2001 May; 45(5):1528-34. PubMed ID: 11302822
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Barreling through the outer membrane.
    Matouschek A; Glick BS
    Nat Struct Biol; 2001 Apr; 8(4):284-6. PubMed ID: 11276240
    [No Abstract]   [Full Text] [Related]  

  • 39. Tim9p, an essential partner subunit of Tim10p for the import of mitochondrial carrier proteins.
    Koehler CM; Merchant S; Oppliger W; Schmid K; Jarosch E; Dolfini L; Junne T; Schatz G; Tokatlidis K
    EMBO J; 1998 Nov; 17(22):6477-86. PubMed ID: 9822593
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The Saccharomyces cerevisiae early secretion mutant tip20 is synthetic lethal with mutants in yeast coatomer and the SNARE proteins Sec22p and Ufe1p.
    Frigerio G
    Yeast; 1998 May; 14(7):633-46. PubMed ID: 9639310
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.