These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 38708393)

  • 1. Stress phenotyping analysis leveraging autofluorescence image sequences with machine learning.
    Das Choudhury S; Guadagno CR; Bashyam S; Mazis A; Ewers BE; Samal A; Awada T
    Front Plant Sci; 2024; 15():1353110. PubMed ID: 38708393
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Leaf Count Aided Novel Framework for Rice (
    Vishal MK; Saluja R; Aggrawal D; Banerjee B; Raju D; Kumar S; Chinnusamy V; Sahoo RN; Adinarayana J
    Plants (Basel); 2022 Oct; 11(19):. PubMed ID: 36235529
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Holistic and component plant phenotyping using temporal image sequence.
    Das Choudhury S; Bashyam S; Qiu Y; Samal A; Awada T
    Plant Methods; 2018; 14():35. PubMed ID: 29760766
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Leveraging Image Analysis to Compute 3D Plant Phenotypes Based on Voxel-Grid Plant Reconstruction.
    Das Choudhury S; Maturu S; Samal A; Stoerger V; Awada T
    Front Plant Sci; 2020; 11():521431. PubMed ID: 33362806
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A spatio temporal spectral framework for plant stress phenotyping.
    Khanna R; Schmid L; Walter A; Nieto J; Siegwart R; Liebisch F
    Plant Methods; 2019; 15():13. PubMed ID: 30774703
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Erratum: High-Throughput Identification of Resistance to Pseudomonas syringae pv. Tomato in Tomato using Seedling Flood Assay.
    J Vis Exp; 2023 Oct; (200):. PubMed ID: 37851522
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Exploiting High-Throughput Indoor Phenotyping to Characterize the Founders of a Structured
    Ebersbach J; Khan NA; McQuillan I; Higgins EE; Horner K; Bandi V; Gutwin C; Vail SL; Robinson SJ; Parkin IAP
    Front Plant Sci; 2021; 12():780250. PubMed ID: 35069637
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phenotyping of
    Yao J; Sun D; Cen H; Xu H; Weng H; Yuan F; He Y
    Front Plant Sci; 2018; 9():603. PubMed ID: 29868063
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A real-time phenotyping framework using machine learning for plant stress severity rating in soybean.
    Naik HS; Zhang J; Lofquist A; Assefa T; Sarkar S; Ackerman D; Singh A; Singh AK; Ganapathysubramanian B
    Plant Methods; 2017; 13():23. PubMed ID: 28405214
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hyperspectral imaging combined with machine learning as a tool to obtain high-throughput plant salt-stress phenotyping.
    Feng X; Zhan Y; Wang Q; Yang X; Yu C; Wang H; Tang Z; Jiang D; Peng C; He Y
    Plant J; 2020 Mar; 101(6):1448-1461. PubMed ID: 31680357
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Drought stress prediction and propagation using time series modeling on multimodal plant image sequences.
    Das Choudhury S; Saha S; Samal A; Mazis A; Awada T
    Front Plant Sci; 2023; 14():1003150. PubMed ID: 36844082
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Leveraging Image Analysis for High-Throughput Plant Phenotyping.
    Das Choudhury S; Samal A; Awada T
    Front Plant Sci; 2019; 10():508. PubMed ID: 31068958
    [TBL] [Abstract][Full Text] [Related]  

  • 13. AI-assisted image analysis and physiological validation for progressive drought detection in a diverse panel of
    Renó V; Cardellicchio A; Romanjenko BC; Guadagno CR
    Front Plant Sci; 2023; 14():1305292. PubMed ID: 38449576
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Application of Phenotyping Methods in Detection of Drought and Salinity Stress in Basil (
    Lazarević B; Šatović Z; Nimac A; Vidak M; Gunjača J; Politeo O; Carović-Stanko K
    Front Plant Sci; 2021; 12():629441. PubMed ID: 33679843
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multi-feature data repository development and analytics for image cosegmentation in high-throughput plant phenotyping.
    Quiñones R; Munoz-Arriola F; Choudhury SD; Samal A
    PLoS One; 2021; 16(9):e0257001. PubMed ID: 34473794
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Exogenous brassinosteroid and jasmonic acid improve drought tolerance in Brassica rapa L. genotypes by modulating osmolytes, antioxidants and photosynthetic system.
    Ahmad Lone W; Majeed N; Yaqoob U; John R
    Plant Cell Rep; 2022 Mar; 41(3):603-617. PubMed ID: 34374791
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Expansion of the circadian transcriptome in
    Greenham K; Sartor RC; Zorich S; Lou P; Mockler TC; McClung CR
    Elife; 2020 Sep; 9():. PubMed ID: 32996462
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hyperspectral Technique Combined With Deep Learning Algorithm for Prediction of Phenotyping Traits in Lettuce.
    Yu S; Fan J; Lu X; Wen W; Shao S; Guo X; Zhao C
    Front Plant Sci; 2022; 13():927832. PubMed ID: 35845657
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dynamics of Maize Vegetative Growth and Drought Adaptability Using Image-Based Phenotyping Under Controlled Conditions.
    Dodig D; Božinović S; Nikolić A; Zorić M; Vančetović J; Ignjatović-Micić D; Delić N; Weigelt-Fischer K; Altmann T; Junker A
    Front Plant Sci; 2021; 12():652116. PubMed ID: 34046050
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An automated, high-throughput plant phenotyping system using machine learning-based plant segmentation and image analysis.
    Lee U; Chang S; Putra GA; Kim H; Kim DH
    PLoS One; 2018; 13(4):e0196615. PubMed ID: 29702690
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.