These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 38708605)

  • 1. The Chemical Bond at the Bottom of the Periodic Table: The Case of the Heavy Astatine and the Super-Heavy Tennessine.
    Gamboni G; Belpassi L; Belanzoni P
    Chemphyschem; 2024 Aug; 25(15):e202400310. PubMed ID: 38708605
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spin-orbit coupling is the key to unraveling intriguing features of the halogen bond involving astatine.
    Rossi E; De Santis M; Sorbelli D; Storchi L; Belpassi L; Belanzoni P
    Phys Chem Chem Phys; 2020 Jan; 22(4):1897-1910. PubMed ID: 31912075
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Charge-Displacement Analysis via Natural Orbitals for Chemical Valence in the Four-Component Relativistic Framework.
    De Santis M; Rampino S; Quiney HM; Belpassi L; Storchi L
    J Chem Theory Comput; 2018 Mar; 14(3):1286-1296. PubMed ID: 29384673
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spectroscopic/Bond Property Relationship in Group 11 Dihydrides via Relativistic Four-Component Methods.
    Sorbelli D; De Santis M; Belanzoni P; Belpassi L
    J Phys Chem A; 2020 Dec; 124(50):10565-10579. PubMed ID: 33327724
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electron-Spin Structure and Metal-Ligand Bonding in Open-Shell Systems from Relativistic EPR and NMR: A Case Study of Square-Planar Iridium Catalysts.
    Bora PL; Novotný J; Ruud K; Komorovsky S; Marek R
    J Chem Theory Comput; 2019 Jan; 15(1):201-214. PubMed ID: 30485092
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spin-orbit coupling as a probe to decipher halogen bonding.
    Graton J; Rahali S; Le Questel JY; Montavon G; Pilmé J; Galland N
    Phys Chem Chem Phys; 2018 Dec; 20(47):29616-29624. PubMed ID: 30318527
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Chemical Bond and s-d Hybridization in Coinage Metal(I) Cyanides.
    De Santis M; Rampino S; Storchi L; Belpassi L; Tarantelli F
    Inorg Chem; 2019 Sep; 58(17):11716-11729. PubMed ID: 31398012
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Linking the Character of the Metal-Ligand Bond to the Ligand NMR Shielding in Transition-Metal Complexes: NMR Contributions from Spin-Orbit Coupling.
    Novotný J; Vícha J; Bora PL; Repisky M; Straka M; Komorovsky S; Marek R
    J Chem Theory Comput; 2017 Aug; 13(8):3586-3601. PubMed ID: 28682632
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Natural orbitals for chemical valence as descriptors of chemical bonding in transition metal complexes.
    Mitoraj M; Michalak A
    J Mol Model; 2007 Feb; 13(2):347-55. PubMed ID: 17024408
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Astatine Facing Janus: Halogen Bonding vs. Charge-Shift Bonding.
    Sarr S; Pilmé J; Montavon G; Le Questel JY; Galland N
    Molecules; 2021 Jul; 26(15):. PubMed ID: 34361716
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Halogen Bond in Weakly Bonded Complexes and the Consequences for Aromaticity and Spin-Orbit Coupling.
    Cunha AV; Havenith RWA; van Gog J; De Vleeschouwer F; De Proft F; Herrebout W
    Molecules; 2023 Jan; 28(2):. PubMed ID: 36677828
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Relativity-Induced Bonding Pattern Change in Coinage Metal Dimers M
    Li WL; Lu JB; Wang ZL; Hu HS; Li J
    Inorg Chem; 2018 May; 57(9):5499-5506. PubMed ID: 29687722
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Recent advances and perspectives in four-component Dirac-Kohn-Sham calculations.
    Belpassi L; Storchi L; Quiney HM; Tarantelli F
    Phys Chem Chem Phys; 2011 Jul; 13(27):12368-94. PubMed ID: 21670843
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Relativity and the periodic table.
    Pyper NC
    Philos Trans A Math Phys Eng Sci; 2020 Sep; 378(2180):20190305. PubMed ID: 32811360
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nature of the Ru-NO Coordination Bond: Kohn-Sham Molecular Orbital and Energy Decomposition Analysis.
    Orenha RP; Rocha MVJ; Poater J; Galembeck SE; Bickelhaupt FM
    ChemistryOpen; 2017 Jun; 6(3):410-416. PubMed ID: 28638774
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effective bond orders from two-step spin-orbit coupling approaches: the I2, At2, IO(+), and AtO(+) case studies.
    Maurice R; Réal F; Gomes AS; Vallet V; Montavon G; Galland N
    J Chem Phys; 2015 Mar; 142(9):094305. PubMed ID: 25747079
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nature of Beryllium, Magnesium, and Zinc Bonds in Carbene⋯MX
    Sagan F; Mitoraj M; Jabłoński M
    Int J Mol Sci; 2022 Nov; 23(23):. PubMed ID: 36498996
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Theoretical description of halogen bonding - an insight based on the natural orbitals for chemical valence combined with the extended-transition-state method (ETS-NOCV).
    Mitoraj MP; Michalak A
    J Mol Model; 2013 Nov; 19(11):4681-8. PubMed ID: 22669533
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Theoretical analysis of bonding in N-heterocyclic carbene-rhodium complexes.
    Srebro M; Michalak A
    Inorg Chem; 2009 Jun; 48(12):5361-9. PubMed ID: 19400577
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Computationally rational design of metal-involving halogen bonds with π-covalency: Structures and bonding analysis.
    Zhang C; Bai H; Hu J; Guo K; Zhao L
    J Comput Chem; 2023 Jan; 44(3):480-488. PubMed ID: 36377670
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.