These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 38708690)

  • 1. Comparison of foot pressure distribution and foot kinematics in undulatory underwater swimming between performance levels.
    Koga D; Nakazono Y; Tsunokawa T; Sengoku Y; Kudo S; Takagi H
    Sports Biomech; 2024 May; ():1-17. PubMed ID: 38708690
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Competitive-Level Differences in Trunk and Foot Kinematics of Underwater Undulatory Swimming.
    Tanaka T; Hashizume S; Sato T; Isaka T
    Int J Environ Res Public Health; 2022 Mar; 19(7):. PubMed ID: 35409681
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Changes in Kinematics and Muscle Activity With Increasing Velocity During Underwater Undulatory Swimming.
    Yamakawa KK; Shimojo H; Takagi H; Sengoku Y
    Front Sports Act Living; 2022; 4():829618. PubMed ID: 35498520
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Relationship Between Undulatory Underwater Kick Performance Determinants and Underwater Velocity in Competitive Swimmers: A Systematic Review.
    West R; Lorimer A; Pearson S; Keogh JWL
    Sports Med Open; 2022 Jul; 8(1):95. PubMed ID: 35900641
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Muscle Synergy of the Underwater Undulatory Swimming in Elite Male Swimmers.
    Matsuura Y; Matsunaga N; Iizuka S; Akuzawa H; Kaneoka K
    Front Sports Act Living; 2020; 2():62. PubMed ID: 33345053
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Three-dimensional lower-limb kinematics during undulatory underwater swimming.
    Matsuda Y; Kaneko M; Sakurai Y; Akashi K; Yasuo S
    Sports Biomech; 2021 Nov; ():1-15. PubMed ID: 34784836
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ankle joint flexibility affects undulatory underwater swimming speed.
    Kuhn J; Legerlotz K
    Front Sports Act Living; 2022; 4():948034. PubMed ID: 36032263
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Kinematic changes in the undulatory kicking during underwater swimming.
    Veiga S; Qiu X; Trinidad A; Suz P; Bazuelo B; Navarro E
    Sports Biomech; 2023 Feb; ():1-15. PubMed ID: 36756980
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of imposing changes in kick frequency on kinematics during undulatory underwater swimming at maximal effort in male swimmers.
    Shimojo H; Sengoku Y; Miyoshi T; Tsubakimoto S; Takagi H
    Hum Mov Sci; 2014 Dec; 38():94-105. PubMed ID: 25278097
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Relationships between kinematics and undulatory underwater swimming performance.
    Higgs AJ; Pease DL; Sanders RH
    J Sports Sci; 2017 May; 35(10):995-1003. PubMed ID: 27431482
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Understanding the effects of training on underwater undulatory swimming performance and kinematics.
    Ruiz-Navarro JJ; Cano-Adamuz M; Andersen JT; Cuenca-Fernández F; López-Contreras G; Vanrenterghem J; Arellano R
    Sports Biomech; 2024 Jun; 23(6):772-787. PubMed ID: 33663350
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Impact of variations in swimming velocity on wake flow dynamics in human underwater undulatory swimming.
    Nakazono Y; Shimojo H; Sengoku Y; Takagi H; Tsunokawa T
    J Biomech; 2024 Mar; 165():112020. PubMed ID: 38422774
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Does ankle joint flexibility affect underwater kicking efficiency and three-dimensional kinematics?
    Shimojo H; Nara R; Baba Y; Ichikawa H; Ikeda Y; Shimoyama Y
    J Sports Sci; 2019 Oct; 37(20):2339-2346. PubMed ID: 31216935
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Kinematic Analysis of the Underwater Undulatory Swimming Cycle: A Systematic and Synthetic Review.
    Veiga S; Lorenzo J; Trinidad A; Pla R; Fallas-Campos A; de la Rubia A
    Int J Environ Res Public Health; 2022 Sep; 19(19):. PubMed ID: 36231498
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of the Skill, Gender, and Kick Order on the Kinematic Characteristics of Underwater Undulatory Swimming in the Dorsal Position.
    Veiga S; Qiu X; Trinidad A; Dolek BE; de la Rubia A; Navarro E
    J Hum Kinet; 2024 Jan; 90():45-56. PubMed ID: 38380311
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A comparison of the kinematics of the dolphin kick in humans and cetaceans.
    von Loebbecke A; Mittal R; Fish F; Mark R
    Hum Mov Sci; 2009 Feb; 28(1):99-112. PubMed ID: 18986721
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Large and Strong Vortex Around the Trunk and Behind the Swimmer is Associated with Great Performance in Underwater Undulatory Swimming.
    Tanaka T; Hashizume S; Kurihara T; Isaka T
    J Hum Kinet; 2022 Oct; 84():64-73. PubMed ID: 36457469
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Relationship between dolphin kick movement in humans and velocity during undulatory underwater swimming.
    Ikeda Y; Ichikawa H; Shimojo H; Nara R; Baba Y; Shimoyama Y
    J Sports Sci; 2021 Jul; 39(13):1497-1503. PubMed ID: 33593229
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The determinant factors of undulatory underwater swimming performance: A systematic review.
    Ruiz-Navarro JJ; Cuenca-Fernández F; Sanders R; Arellano R
    J Sports Sci; 2022 Jun; 40(11):1243-1254. PubMed ID: 35384796
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Body movement distribution with respect to swimmer's glide position in human underwater undulatory swimming.
    Hochstein S; Blickhan R
    Hum Mov Sci; 2014 Dec; 38():305-18. PubMed ID: 25457427
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.