BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 38708893)

  • 1. Bioinspired H-Bonding Connected Gradient Nanostructure Actuators Based on Cellulose Nanofibrils and Graphene.
    Yang Z; Wang Y; Lan L; Wang Y; Zhang X
    Small; 2024 May; ():e2401580. PubMed ID: 38708893
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Robust and Highly Sensitive Cellulose Nanofiber-Based Humidity Actuators.
    Wei J; Jia S; Guan J; Ma C; Shao Z
    ACS Appl Mater Interfaces; 2021 Nov; 13(45):54417-54427. PubMed ID: 34734698
    [TBL] [Abstract][Full Text] [Related]  

  • 3. MXene-Based Soft Humidity-Driven Actuator with High Sensitivity and Fast Response.
    Wu J; Ai W; Long Y; Song K
    ACS Appl Mater Interfaces; 2024 May; 16(21):27650-27656. PubMed ID: 38747462
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ultrarobust Ti
    Cao J; Zhou Z; Song Q; Chen K; Su G; Zhou T; Zheng Z; Lu C; Zhang X
    ACS Nano; 2020 Jun; 14(6):7055-7065. PubMed ID: 32441915
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bioinspired Smart Moisture Actuators Based on Nanoscale Cellulose Materials and Porous, Hydrophilic EVOH Nanofibrous Membranes.
    Zhu Q; Jin Y; Wang W; Sun G; Wang D
    ACS Appl Mater Interfaces; 2019 Jan; 11(1):1440-1448. PubMed ID: 30525388
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multi-responsive and programmable actuators made with nacre-inspired graphene oxide-bacterial cellulose film.
    Yang K; Cai W; Lan M; Ye Y; Tang Z; Guo Q; Weng M
    Soft Matter; 2022 Dec; 18(47):9057-9068. PubMed ID: 36416498
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Honeycomb-Inspired Robust Hygroscopic Nanofibrous Cellular Networks.
    Zhang Y; Wu L; Babar AA; Zhao X; Wang X; Yu J; Ding B
    Small Methods; 2021 Nov; 5(11):e2101011. PubMed ID: 34927957
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tough and Multifunctional Composite Film Actuators Based on Cellulose Nanofibers toward Smart Wearables.
    Wei J; Jia S; Wei J; Ma C; Shao Z
    ACS Appl Mater Interfaces; 2021 Aug; 13(32):38700-38711. PubMed ID: 34370460
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Flexible and Super-Sensitive Moisture-Responsive Actuators by Dispersing Graphene Oxide into Three-Dimensional Structures of Nanofibers and Silver Nanowires.
    Xiang C; Wang W; Zhu Q; Xue D; Zhao X; Li M; Wang D
    ACS Appl Mater Interfaces; 2020 Jan; 12(2):3245-3253. PubMed ID: 31867950
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nanofibrous Actuator with an Alignment Gradient for Millisecond-Responsive, Multidirectional, Multimodal, and Multidimensional Large Deformation.
    Qin J; Feng P; Wang Y; Du X; Song B
    ACS Appl Mater Interfaces; 2020 Oct; 12(41):46719-46732. PubMed ID: 32945656
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Remotely Controlled Light/Electric/Magnetic Multiresponsive Hydrogel for Fast Actuations.
    Wei X; Wu Q; Chen L; Sun Y; Chen L; Zhang C; Li S; Ma C; Jiang S
    ACS Appl Mater Interfaces; 2023 Feb; ():. PubMed ID: 36779704
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Photoresponsive Graphene Composite Bilayer Actuator for Soft Robots.
    Wang X; Jiao N; Tung S; Liu L
    ACS Appl Mater Interfaces; 2019 Aug; 11(33):30290-30299. PubMed ID: 31361459
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multiresponsive Ti
    Tang ZH; Zhu WB; Mao YQ; Zhu ZC; Li YQ; Huang P; Fu SY
    ACS Appl Mater Interfaces; 2022 May; 14(18):21474-21485. PubMed ID: 35486453
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Supramolecularly Connected Armor-like Nanostructure Enables Mechanically Robust Radiative Cooling Materials.
    Zhou P; Wang Y; Zhang X
    Nano Lett; 2024 May; 24(21):6395-6402. PubMed ID: 38757657
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multistimulus Responsive Actuator with GO and Carbon Nanotube/PDMS Bilayer Structure for Flexible and Smart Devices.
    Wang W; Xiang C; Zhu Q; Zhong W; Li M; Yan K; Wang D
    ACS Appl Mater Interfaces; 2018 Aug; 10(32):27215-27223. PubMed ID: 30036482
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electromechanical actuator with controllable motion, fast response rate, and high-frequency resonance based on graphene and polydiacetylene.
    Liang J; Huang L; Li N; Huang Y; Wu Y; Fang S; Oh J; Kozlov M; Ma Y; Li F; Baughman R; Chen Y
    ACS Nano; 2012 May; 6(5):4508-19. PubMed ID: 22512356
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Flexible Actuators with Hygroscopic Adaptability for Smart Wearables and Soft Grippers.
    Wu J; Jiang W; Gu M; Sun F; Han C; Gong H
    ACS Appl Mater Interfaces; 2023 Dec; 15(51):59989-60001. PubMed ID: 38085924
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Special section on biomimetics of movement.
    Carpi F; Erb R; Jeronimidis G
    Bioinspir Biomim; 2011 Dec; 6(4):040201. PubMed ID: 22128305
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nanocellulose-mediated bilayer hydrogel actuators with thermo-responsive, shape memory and self-sensing performances.
    Ma Y; Lu Y; Yue Y; He S; Jiang S; Mei C; Xu X; Wu Q; Xiao H; Han J
    Carbohydr Polym; 2024 Jul; 335():122067. PubMed ID: 38616090
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Carbon-Based Nanomaterials Electrodes of Ionic Soft Actuators: From Initial 1D Structure to 3D Composite Structure for Flexible Intelligent Devices.
    Wang B; Huang P; Li B; Wu Z; Xing Y; Zhu J; Liu L
    Small; 2023 Dec; 19(50):e2304246. PubMed ID: 37635123
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.