These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 38709040)

  • 1. Non-destructive SPE-UPLC-based Quantification of Aflatoxins and Stilbenoid Phytoalexins in Single Peanut (Arachis spp.) Seeds.
    Sobolev VS; Arias RS; Massa AN; Walk TE; Orner VA; Lamb MC
    J Vis Exp; 2024 Apr; (206):. PubMed ID: 38709040
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inhibition of Aflatoxin Formation in Aspergillus Species by Peanut ( Arachis hypogaea) Seed Stilbenoids in the Course of Peanut-Fungus Interaction.
    Sobolev V; Walk T; Arias R; Massa A; Lamb M
    J Agric Food Chem; 2019 Jun; 67(22):6212-6221. PubMed ID: 31099566
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Suppression of Aflatoxin Production in Aspergillus Species by Selected Peanut (Arachis hypogaea) Stilbenoids.
    Sobolev V; Arias R; Goodman K; Walk T; Orner V; Faustinelli P; Massa A
    J Agric Food Chem; 2018 Jan; 66(1):118-126. PubMed ID: 29207242
    [TBL] [Abstract][Full Text] [Related]  

  • 4. New Monomeric Stilbenoids from Peanut (Arachis hypogaea) Seeds Challenged by an Aspergillus flavus Strain.
    Sobolev VS; Krausert NM; Gloer JB
    J Agric Food Chem; 2016 Jan; 64(3):579-84. PubMed ID: 26672388
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transformation of Major Peanut (
    Sobolev VS; Walk TE; Arias RS; Massa AN; Orner VA; Lamb MC
    J Agric Food Chem; 2022 Feb; 70(4):1101-1110. PubMed ID: 35061949
    [TBL] [Abstract][Full Text] [Related]  

  • 6. New dimeric stilbenoids from fungal-challenged peanut ( Arachis hypogaea) seeds.
    Sobolev VS; Neff SA; Gloer JB
    J Agric Food Chem; 2010 Jan; 58(2):875-81. PubMed ID: 20020707
    [TBL] [Abstract][Full Text] [Related]  

  • 7. New stilbenoids from peanut ( Arachis hypogaea ) seeds challenged by an Aspergillus caelatus strain.
    Sobolev VS; Neff SA; Gloer JB
    J Agric Food Chem; 2009 Jan; 57(1):62-8. PubMed ID: 19063668
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biological activity of peanut (Arachis hypogaea) phytoalexins and selected natural and synthetic Stilbenoids.
    Sobolev VS; Khan SI; Tabanca N; Wedge DE; Manly SP; Cutler SJ; Coy MR; Becnel JJ; Neff SA; Gloer JB
    J Agric Food Chem; 2011 Mar; 59(5):1673-82. PubMed ID: 21314127
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Production of stilbenoids and phenolic acids by the peanut plant at early stages of growth.
    Sobolev VS; Horn BW; Potter TL; Deyrup ST; Gloer JB
    J Agric Food Chem; 2006 May; 54(10):3505-11. PubMed ID: 19127717
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Production of phytoalexins in peanut (Arachis hypogaea) seed elicited by selected microorganisms.
    Sobolev VS
    J Agric Food Chem; 2013 Feb; 61(8):1850-8. PubMed ID: 23387286
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rapid and simultaneous in situ assessment of aflatoxins and stilbenes using silica plate imprinting mass spectrometry imaging.
    de Oliveira DN; Ferreira MS; Catharino RR
    PLoS One; 2014; 9(3):e90901. PubMed ID: 24595464
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Localized production of phytoalexins by peanut (Arachis hypogaea) kernels in response to invasion by Aspergillus species.
    Sobolev VS
    J Agric Food Chem; 2008 Mar; 56(6):1949-54. PubMed ID: 18298071
    [TBL] [Abstract][Full Text] [Related]  

  • 13. New tools to screen wild peanut species for aflatoxin accumulation and genetic fingerprinting.
    Arias RS; Sobolev VS; Massa AN; Orner VA; Walk TE; Ballard LL; Simpson SA; Puppala N; Scheffler BE; de Blas F; Seijo GJ
    BMC Plant Biol; 2018 Aug; 18(1):170. PubMed ID: 30111278
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genotypic Regulation of Aflatoxin Accumulation but Not Aspergillus Fungal Growth upon Post-Harvest Infection of Peanut (Arachis hypogaea L.) Seeds.
    Korani WA; Chu Y; Holbrook C; Clevenger J; Ozias-Akins P
    Toxins (Basel); 2017 Jul; 9(7):. PubMed ID: 28704974
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Food grade fungal stress on germinating peanut seeds induced phytoalexins and enhanced polyphenolic antioxidants.
    Wu Z; Song L; Huang D
    J Agric Food Chem; 2011 Jun; 59(11):5993-6003. PubMed ID: 21545178
    [TBL] [Abstract][Full Text] [Related]  

  • 16. RNAi-mediated Control of Aflatoxins in Peanut: Method to Analyze Mycotoxin Production and Transgene Expression in the Peanut/Aspergillus Pathosystem.
    Arias RS; Dang PM; Sobolev VS
    J Vis Exp; 2015 Dec; (106):e53398. PubMed ID: 26709851
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparative transcript profiling of resistant and susceptible peanut post-harvest seeds in response to aflatoxin production by Aspergillus flavus.
    Wang H; Lei Y; Wan L; Yan L; Lv J; Dai X; Ren X; Guo W; Jiang H; Liao B
    BMC Plant Biol; 2016 Feb; 16():54. PubMed ID: 26922489
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stilbenoid prenyltransferases define key steps in the diversification of peanut phytoalexins.
    Yang T; Fang L; Sanders S; Jayanthi S; Rajan G; Podicheti R; Thallapuranam SK; Mockaitis K; Medina-Bolivar F
    J Biol Chem; 2018 Jan; 293(1):28-46. PubMed ID: 29158266
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Recent applications of peanut phytoalexins.
    Holland KW; O'Keefe SF
    Recent Pat Food Nutr Agric; 2010 Nov; 2(3):221-32. PubMed ID: 20858192
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The biodiversity of Aspergillus section Flavi and aflatoxins in the Brazilian peanut production chain.
    Martins LM; Sant'Ana AS; Fungaro MH; Silva JJ; Nascimento MD; Frisvad JC; Taniwaki MH
    Food Res Int; 2017 Apr; 94():101-107. PubMed ID: 28290359
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.