These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
148 related articles for article (PubMed ID: 38709198)
1. Selective Capture and Manipulation of DNA through Double Charged Nanopores. Lin X; Chen H; Wu G; Zhao J; Zhang Y; Sha J; Si W J Phys Chem Lett; 2024 May; 15(19):5120-5129. PubMed ID: 38709198 [TBL] [Abstract][Full Text] [Related]
2. Controlling DNA Fragments Translocation across Nanopores with the Synergic Use of Site-Directed Mutagenesis, pH-Dependent Charge Tuning, and Electroosmotic Flow. Mereuta L; Bhatti H; Asandei A; Cimpanu A; Ying YL; Long YT; Luchian T ACS Appl Mater Interfaces; 2024 Jul; 16(30):40100-40110. PubMed ID: 39038810 [TBL] [Abstract][Full Text] [Related]
3. Revealing the mechanism of DNA passing through graphene and boron nitride nanopores. Tyagi A; Chu K; Hossain MD; Abidi IH; Lin W; Yan Y; Zhang K; Luo Z Nanoscale; 2019 Dec; 11(48):23438-23448. PubMed ID: 31799536 [TBL] [Abstract][Full Text] [Related]
4. Spontaneous Transport of Single-Stranded DNA through Graphene-MoS Luan B; Zhou R ACS Nano; 2018 Apr; 12(4):3886-3891. PubMed ID: 29648440 [TBL] [Abstract][Full Text] [Related]
5. Spontaneous Translocation of Single-Stranded DNA in Graphene-MoS Zou A; Xiu P; Ou X; Zhou R J Phys Chem B; 2020 Oct; 124(43):9490-9496. PubMed ID: 33064482 [TBL] [Abstract][Full Text] [Related]
6. Mechanism of how salt-gradient-induced charges affect the translocation of DNA molecules through a nanopore. He Y; Tsutsui M; Scheicher RH; Fan C; Taniguchi M; Kawai T Biophys J; 2013 Aug; 105(3):776-82. PubMed ID: 23931325 [TBL] [Abstract][Full Text] [Related]
7. Precise control of CNT-DNA assembled nanomotor using oppositely charged dual nanopores. Ma C; Xu W; Liu W; Xu C; Si W; Sha J Nanoscale; 2023 Jul; 15(26):11052-11063. PubMed ID: 37350160 [TBL] [Abstract][Full Text] [Related]
8. Intrinsic Stepwise Translocation of Stretched ssDNA in Graphene Nanopores. Qiu H; Sarathy A; Leburton JP; Schulten K Nano Lett; 2015 Dec; 15(12):8322-30. PubMed ID: 26581231 [TBL] [Abstract][Full Text] [Related]
9. Controlling Electroosmosis in Nanopores Without Altering the Nanopore Sensing Region. Baldelli M; Di Muccio G; Sauciuc A; Morozzo Della Rocca B; Viola F; Balme S; Bonini A; Maglia G; Chinappi M Adv Mater; 2024 Aug; 36(33):e2401761. PubMed ID: 38860821 [TBL] [Abstract][Full Text] [Related]
10. Nanopore actuation of a DNA-tracked nanovehicle. Si W; Lin X; Wang L; Wu G; Zhang Y; Chen Y; Sha J Nanoscale; 2023 Sep; 15(35):14659-14668. PubMed ID: 37622615 [TBL] [Abstract][Full Text] [Related]
11. Field effect regulation of DNA translocation through a nanopore. Ai Y; Liu J; Zhang B; Qian S Anal Chem; 2010 Oct; 82(19):8217-25. PubMed ID: 20804162 [TBL] [Abstract][Full Text] [Related]
12. Electrophoretic Transport of Single-Stranded DNA through a Two Dimensional Nanopore Patterned on an In-Plane Heterostructure. Luan B; Kuroda MA ACS Nano; 2020 Oct; 14(10):13137-13145. PubMed ID: 32902252 [TBL] [Abstract][Full Text] [Related]
13. Electroosmotic Sensing of Uncharged Peptides and Differentiating Their Phosphorylated States Using Nanopores. Si W; Chen J; Zhang Z; Wu G; Zhao J; Sha J Chemphyschem; 2024 Aug; 25(15):e202400281. PubMed ID: 38686913 [TBL] [Abstract][Full Text] [Related]
14. Computational investigation on DNA sequencing using functionalized graphene nanopores. Yu YS; Lu X; Ding HM; Ma YQ Phys Chem Chem Phys; 2018 Apr; 20(14):9063-9069. PubMed ID: 29446423 [TBL] [Abstract][Full Text] [Related]
15. Conformation Influence of DNA on the Detection Signal through Solid-State Nanopores. Liu W; Ma C; Wang H; Sha J Langmuir; 2024 May; 40(18):9622-9629. PubMed ID: 38652583 [TBL] [Abstract][Full Text] [Related]
16. Controllable and reversible DNA translocation through a single-layer molybdenum disulfide nanopore. Si W; Zhang Y; Sha J; Chen Y Nanoscale; 2018 Nov; 10(41):19450-19458. PubMed ID: 30311618 [TBL] [Abstract][Full Text] [Related]
17. Exploring the non-monotonic DNA capture behavior in a charged graphene nanopore. Yu YS; Ren Q; Tan RR; Ding HM Phys Chem Chem Phys; 2023 Oct; 25(41):28034-28042. PubMed ID: 37846110 [TBL] [Abstract][Full Text] [Related]
18. Investigation of entrance effects on particle electrophoretic behavior near a nanopore for resistive pulse sensing. Hsu C; Lin CY; Alizadeh A; Daiguji H; Hsu WL Electrophoresis; 2021 Nov; 42(21-22):2206-2214. PubMed ID: 34472124 [TBL] [Abstract][Full Text] [Related]
19. Assessing graphene nanopores for sequencing DNA. Wells DB; Belkin M; Comer J; Aksimentiev A Nano Lett; 2012 Aug; 12(8):4117-23. PubMed ID: 22780094 [TBL] [Abstract][Full Text] [Related]
20. Effects of Nanopore Charge Decorations on the Translocation Dynamics of DNA. Jou I; Muthukumar M Biophys J; 2017 Oct; 113(8):1664-1672. PubMed ID: 29045861 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]