BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 38709860)

  • 1.
    Karan S; Durán-Meza AL; Chapman A; Tanimoto C; Chan SK; Knobler CM; Gelbart WM; Steinmetz NF
    Mol Pharm; 2024 Jun; 21(6):2727-2739. PubMed ID: 38709860
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Delivery of self-amplifying RNA vaccines in in vitro reconstituted virus-like particles.
    Biddlecome A; Habte HH; McGrath KM; Sambanthamoorthy S; Wurm M; Sykora MM; Knobler CM; Lorenz IC; Lasaro M; Elbers K; Gelbart WM
    PLoS One; 2019; 14(6):e0215031. PubMed ID: 31163034
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Feasibility of Cowpea chlorotic mottle virus-like particles as scaffold for epitope presentations.
    Hassani-Mehraban A; Creutzburg S; van Heereveld L; Kormelink R
    BMC Biotechnol; 2015 Aug; 15():80. PubMed ID: 26311254
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Plant Virus-Like Particles for RNA Delivery.
    Ramirez-Acosta K; Loredo-García E; Herrera-Hernandez MM; Cadena-Nava RD
    Methods Mol Biol; 2024; 2822():387-410. PubMed ID: 38907930
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Polymorphic assembly of virus-capsid proteins around DNA and the cellular uptake of the resulting particles.
    de Ruiter MV; van der Hee RM; Driessen AJM; Keurhorst ED; Hamid M; Cornelissen JJLM
    J Control Release; 2019 Aug; 307():342-354. PubMed ID: 31228473
    [TBL] [Abstract][Full Text] [Related]  

  • 6. VLPs Derived from the CCMV Plant Virus Can Directly Transfect and Deliver Heterologous Genes for Translation into Mammalian Cells.
    Villagrana-Escareño MV; Reynaga-Hernández E; Galicia-Cruz OG; Durán-Meza AL; De la Cruz-González V; Hernández-Carballo CY; Ruíz-García J
    Biomed Res Int; 2019; 2019():4630891. PubMed ID: 31781617
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Highly efficient strategy for the heterologous expression and purification of soluble Cowpea chlorotic mottle virus capsid protein and in vitro pH-dependent assembly of virus-like particles.
    Díaz-Valle A; García-Salcedo YM; Chávez-Calvillo G; Silva-Rosales L; Carrillo-Tripp M
    J Virol Methods; 2015 Dec; 225():23-9. PubMed ID: 26342905
    [TBL] [Abstract][Full Text] [Related]  

  • 8. One-Step Purification Strategy for Cowpea Chlorotic Mottle Virus-Like Particles Produced by the IC-BEVS.
    Martínez A; Porras A; Pastor AR; Palomares LA; Ramírez OT
    Methods Mol Biol; 2024; 2829():237-246. PubMed ID: 38951339
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The impact of size on particle drainage dynamics and antibody response.
    Zinkhan S; Ogrina A; Balke I; Reseviča G; Zeltins A; de Brot S; Lipp C; Chang X; Zha L; Vogel M; Bachmann MF; Mohsen MO
    J Control Release; 2021 Mar; 331():296-308. PubMed ID: 33450322
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Expression and self-assembly of cowpea chlorotic mottle virus-like particles in Pseudomonas fluorescens.
    Phelps JP; Dao P; Jin H; Rasochova L
    J Biotechnol; 2007 Feb; 128(2):290-6. PubMed ID: 17113675
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Protocol for Efficient Cell-Free Synthesis of Cowpea Chlorotic Mottle Virus-Like Particles Containing Heterologous RNAs.
    Garmann RF; Knobler CM; Gelbart WM
    Methods Mol Biol; 2018; 1776():249-265. PubMed ID: 29869247
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Brome mosaic virus-like particles as siRNA nanocarriers for biomedical purposes.
    Nuñez-Rivera A; Fournier PGJ; Arellano DL; Rodriguez-Hernandez AG; Vazquez-Duhalt R; Cadena-Nava RD
    Beilstein J Nanotechnol; 2020; 11():372-382. PubMed ID: 32175217
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cowpea Chlorotic Mottle Virus-Like Particles as Potential Platform for Antisense Oligonucleotide Delivery in Posterior Segment Ocular Diseases.
    Pretto C; Tang M; Chen M; Xu H; Subrizi A; Urtti A; van Hest JCM
    Macromol Biosci; 2021 Aug; 21(8):e2100095. PubMed ID: 34031995
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Highly secretory expression of recombinant cowpea chlorotic mottle virus capsid proteins in Pichia pastoris and in-vitro encapsulation of ruthenium nanoparticles for catalysis.
    Zhu J; Yang K; Liu A; Lu X; Yang L; Zhao Q
    Protein Expr Purif; 2020 Oct; 174():105679. PubMed ID: 32534017
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reconstituted plant viral capsids can release genes to mammalian cells.
    Azizgolshani O; Garmann RF; Cadena-Nava R; Knobler CM; Gelbart WM
    Virology; 2013 Jun; 441(1):12-7. PubMed ID: 23608360
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Simple RNA-DNA Scaffold Templates the Assembly of Monofunctional Virus-Like Particles.
    Garmann RF; Sportsman R; Beren C; Manoharan VN; Knobler CM; Gelbart WM
    J Am Chem Soc; 2015 Jun; 137(24):7584-7. PubMed ID: 26043403
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Assembly of tobacco mosaic virus and TMV-like pseudovirus particles in Escherichia coli.
    Hwang DJ; Roberts IM; Wilson TM
    Arch Virol Suppl; 1994; 9():543-58. PubMed ID: 7518274
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Self-Assembly and Stabilization of Hybrid Cowpea Chlorotic Mottle Virus Particles under Nearly Physiological Conditions.
    Timmermans SBPE; Vervoort DFM; Schoonen L; Nolte RJM; van Hest JCM
    Chem Asian J; 2018 Nov; 13(22):3518-3525. PubMed ID: 29975459
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Capsid protein of cowpea chlorotic mottle virus is a determinant for vector transmission by a beetle.
    Mello AF; Clark AJ; Perry KL
    J Gen Virol; 2010 Feb; 91(Pt 2):545-51. PubMed ID: 19828763
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison of the native CCMV virion with in vitro assembled CCMV virions by cryoelectron microscopy and image reconstruction.
    Fox JM; Wang G; Speir JA; Olson NH; Johnson JE; Baker TS; Young MJ
    Virology; 1998 Apr; 244(1):212-8. PubMed ID: 9581792
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.