BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 38709860)

  • 21. A simple technique for separation of Cowpea chlorotic mottle virus from Cucumber mosaic virus in natural mixed infections.
    Ali A; Roossinck MJ
    J Virol Methods; 2008 Nov; 153(2):163-7. PubMed ID: 18755217
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Modulation of Capsid Dynamics in Bromoviruses by the Host and Heterologous Viral Replicase.
    Chakravarty A; Rao ALN
    J Virol; 2023 Mar; 97(3):e0128422. PubMed ID: 36786601
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The assembly pathway of an icosahedral single-stranded RNA virus depends on the strength of inter-subunit attractions.
    Garmann RF; Comas-Garcia M; Gopal A; Knobler CM; Gelbart WM
    J Mol Biol; 2014 Mar; 426(5):1050-60. PubMed ID: 24148696
    [TBL] [Abstract][Full Text] [Related]  

  • 24. In vitro quantification of the relative packaging efficiencies of single-stranded RNA molecules by viral capsid protein.
    Comas-Garcia M; Cadena-Nava RD; Rao AL; Knobler CM; Gelbart WM
    J Virol; 2012 Nov; 86(22):12271-82. PubMed ID: 22951822
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Exploiting fluorescent polymers to probe the self-assembly of virus-like particles.
    Cadena-Nava RD; Hu Y; Garmann RF; Ng B; Zelikin AN; Knobler CM; Gelbart WM
    J Phys Chem B; 2011 Mar; 115(10):2386-91. PubMed ID: 21338131
    [TBL] [Abstract][Full Text] [Related]  

  • 26. TLR Agonists Delivered by Plant Virus and Bacteriophage Nanoparticles for Cancer Immunotherapy.
    Jung E; Chung YH; Steinmetz NF
    Bioconjug Chem; 2023 Sep; 34(9):1596-1605. PubMed ID: 37611278
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Generation of recombinant protein shells of Johnson grass chlorotic stripe mosaic virus in tobacco plants and their use as drug carrier.
    Alemzadeh E; Izadpanah K; Ahmadi F
    J Virol Methods; 2017 Oct; 248():148-153. PubMed ID: 28709614
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Overexpression and self-assembly of virus-like particles in Nicotiana benthamiana by a single-vector DNA replicon system.
    Moon KB; Lee J; Kang S; Kim M; Mason HS; Jeon JH; Kim HS
    Appl Microbiol Biotechnol; 2014 Oct; 98(19):8281-90. PubMed ID: 24965559
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The Effect of RNA Secondary Structure on the Self-Assembly of Viral Capsids.
    Beren C; Dreesens LL; Liu KN; Knobler CM; Gelbart WM
    Biophys J; 2017 Jul; 113(2):339-347. PubMed ID: 28711172
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Dispensability of 3' tRNA-like sequence for packaging cowpea chlorotic mottle virus genomic RNAs.
    Annamalai P; Rao AL
    Virology; 2005 Feb; 332(2):650-8. PubMed ID: 15680430
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The carboxy-terminal two-thirds of the cowpea chlorotic mottle bromovirus capsid protein is incapable of virion formation yet supports systemic movement.
    Schneider WL; Greene AE; Allison RF
    J Virol; 1997 Jun; 71(6):4862-5. PubMed ID: 9151887
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Encapsidation of Different Plasmonic Gold Nanoparticles by the CCMV CP.
    Durán-Meza AL; Escamilla-Ruiz MI; Segovia-González XF; Villagrana-Escareño MV; Vega-Acosta JR; Ruiz-Garcia J
    Molecules; 2020 Jun; 25(11):. PubMed ID: 32516956
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Production and characterization of chimeric SARS-CoV-2 antigens based on the capsid protein of cowpea chlorotic mottle virus.
    Almendárez-Rodriguez C; Solis-Andrade KI; Govea-Alonso DO; Comas-Garcia M; Rosales-Mendoza S
    Int J Biol Macromol; 2022 Jul; 213():1007-1017. PubMed ID: 35690161
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Virus-ribosome complexes from cell-free translation systems supplemented with cowpea chlorotic mottle virus particles.
    Roenhorst JW; Verduin BJ; Goldbach RW
    Virology; 1989 Jan; 168(1):138-46. PubMed ID: 2909987
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Fabrication of Tobacco Mosaic Virus-Like Nanorods for Peptide Display.
    Larkin EJ; Brown AD; Culver JN
    Methods Mol Biol; 2018; 1776():51-60. PubMed ID: 29869234
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Molecular studies on bromovirus capsid protein. III. Analysis of cell-to-cell movement competence of coat protein defective variants of cowpea chlorotic mottle virus.
    Rao AL
    Virology; 1997 Jun; 232(2):385-95. PubMed ID: 9191853
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Meeting report VLPNPV: Session 5: Plant based technology.
    Meador LR; Mor TS
    Hum Vaccin Immunother; 2014; 10(10):3068-73. PubMed ID: 25581535
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effects of coat protein mutations and reduced movement protein expression on infection spread by cowpea chlorotic mottle virus and its hybrid derivatives.
    De Jong W; Mise K; Chu A; Ahlquist P
    Virology; 1997 May; 232(1):167-73. PubMed ID: 9185600
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Broad Cross-Protection Is Induced in Preclinical Models by a Human Papillomavirus Vaccine Composed of L1/L2 Chimeric Virus-Like Particles.
    Boxus M; Fochesato M; Miseur A; Mertens E; Dendouga N; Brendle S; Balogh KK; Christensen ND; Giannini SL
    J Virol; 2016 Jul; 90(14):6314-25. PubMed ID: 27147749
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Self-assembly of virus-like particles of canine parvovirus capsid protein expressed from Escherichia coli and application as virus-like particle vaccine.
    Xu J; Guo HC; Wei YQ; Dong H; Han SC; Ao D; Sun DH; Wang HM; Cao SZ; Sun SQ
    Appl Microbiol Biotechnol; 2014 Apr; 98(8):3529-38. PubMed ID: 24413974
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.