BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 38709902)

  • 21. Structure of an archaeal RNA polymerase.
    Kusser AG; Bertero MG; Naji S; Becker T; Thomm M; Beckmann R; Cramer P
    J Mol Biol; 2008 Feb; 376(2):303-7. PubMed ID: 18164030
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The transcript elongation factor SPT4/SPT5 is involved in auxin-related gene expression in Arabidopsis.
    Dürr J; Lolas IB; Sørensen BB; Schubert V; Houben A; Melzer M; Deutzmann R; Grasser M; Grasser KD
    Nucleic Acids Res; 2014 Apr; 42(7):4332-47. PubMed ID: 24497194
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Structure-function analysis of the RNA polymerase cleft loops elucidates initial transcription, DNA unwinding and RNA displacement.
    Naji S; Bertero MG; Spitalny P; Cramer P; Thomm M
    Nucleic Acids Res; 2008 Feb; 36(2):676-87. PubMed ID: 18073196
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Molecular mechanisms of transcription elongation in archaea.
    Werner F
    Chem Rev; 2013 Nov; 113(11):8331-49. PubMed ID: 24024741
    [No Abstract]   [Full Text] [Related]  

  • 25. Protein-protein interactions in the archaeal transcriptional machinery: binding studies of isolated RNA polymerase subunits and transcription factors.
    Goede B; Naji S; von Kampen O; Ilg K; Thomm M
    J Biol Chem; 2006 Oct; 281(41):30581-92. PubMed ID: 16885163
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Hold on!: RNA polymerase interactions with the nascent RNA modulate transcription elongation and termination.
    Grohmann D; Werner F
    RNA Biol; 2010; 7(3):310-5. PubMed ID: 20473037
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Spt4 Promotes Pol I Processivity and Transcription Elongation.
    Huffines AK; Edwards YJK; Schneider DA
    Genes (Basel); 2021 Mar; 12(3):. PubMed ID: 33809333
    [TBL] [Abstract][Full Text] [Related]  

  • 28. NusG/Spt5: are there common functions of this ubiquitous transcription elongation factor?
    Yakhnin AV; Babitzke P
    Curr Opin Microbiol; 2014 Apr; 18():68-71. PubMed ID: 24632072
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Evidence that Spt4, Spt5, and Spt6 control transcription elongation by RNA polymerase II in Saccharomyces cerevisiae.
    Hartzog GA; Wada T; Handa H; Winston F
    Genes Dev; 1998 Feb; 12(3):357-69. PubMed ID: 9450930
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The zinc-finger protein SPT4 interacts with SPT5L/KTF1 and modulates transcriptional silencing in Arabidopsis.
    Köllen K; Dietz L; Bies-Etheve N; Lagrange T; Grasser M; Grasser KD
    FEBS Lett; 2015 Oct; 589(21):3254-7. PubMed ID: 26424658
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Structure and nucleic acid binding properties of KOW domains 4 and 6-7 of human transcription elongation factor DSIF.
    Zuber PK; Hahn L; Reinl A; Schweimer K; Knauer SH; Gottesman ME; Rösch P; Wöhrl BM
    Sci Rep; 2018 Aug; 8(1):11660. PubMed ID: 30076330
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Dynamics of RNA polymerase II and elongation factor Spt4/5 recruitment during activator-dependent transcription.
    Rosen GA; Baek I; Friedman LJ; Joo YJ; Buratowski S; Gelles J
    Proc Natl Acad Sci U S A; 2020 Dec; 117(51):32348-32357. PubMed ID: 33293419
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Structural and biochemical insights into the DNA-binding mode of MjSpt4p:Spt5 complex at the exit tunnel of RNAPII.
    Guo G; Gao Y; Zhu Z; Zhao D; Liu Z; Zhou H; Niu L; Teng M
    J Struct Biol; 2015 Dec; 192(3):418-425. PubMed ID: 26433031
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Archaeal RNA polymerase arrests transcription at DNA lesions.
    Gehring AM; Santangelo TJ
    Transcription; 2017; 8(5):288-296. PubMed ID: 28598254
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The orientation of DNA in an archaeal transcription initiation complex.
    Bartlett MS; Thomm M; Geiduschek EP
    Nat Struct Biol; 2000 Sep; 7(9):782-5. PubMed ID: 10966650
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Spt4 facilitates the movement of RNA polymerase II through the +2 nucleosomal barrier.
    Uzun Ü; Brown T; Fischl H; Angel A; Mellor J
    Cell Rep; 2021 Sep; 36(13):109755. PubMed ID: 34592154
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Evolution of complex RNA polymerases: the complete archaeal RNA polymerase structure.
    Korkhin Y; Unligil UM; Littlefield O; Nelson PJ; Stuart DI; Sigler PB; Bell SD; Abrescia NG
    PLoS Biol; 2009 May; 7(5):e1000102. PubMed ID: 19419240
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Mechanisms of Transcription Elongation Factor DSIF (Spt4-Spt5).
    Decker TM
    J Mol Biol; 2021 Jul; 433(14):166657. PubMed ID: 32987031
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Role for the Ssu72 C-terminal domain phosphatase in RNA polymerase II transcription elongation.
    Reyes-Reyes M; Hampsey M
    Mol Cell Biol; 2007 Feb; 27(3):926-36. PubMed ID: 17101794
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Control of transcriptional elongation and cotranscriptional histone modification by the yeast BUR kinase substrate Spt5.
    Zhou K; Kuo WH; Fillingham J; Greenblatt JF
    Proc Natl Acad Sci U S A; 2009 Apr; 106(17):6956-61. PubMed ID: 19365074
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.