BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 38709917)

  • 1. Large enrichments in fatty acid
    Maloney AE; Kopf SH; Zhang Z; McFarlin J; Nelson DB; Masterson AL; Zhang X
    Proc Natl Acad Sci U S A; 2024 May; 121(20):e2310771121. PubMed ID: 38709917
    [TBL] [Abstract][Full Text] [Related]  

  • 2.
    Wijker RS; Sessions AL; Fuhrer T; Phan M
    Proc Natl Acad Sci U S A; 2019 Jun; 116(25):12173-12182. PubMed ID: 31152138
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Large D/H variations in bacterial lipids reflect central metabolic pathways.
    Zhang X; Gillespie AL; Sessions AL
    Proc Natl Acad Sci U S A; 2009 Aug; 106(31):12580-6. PubMed ID: 19617564
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sources of NADPH and expression of mammalian NADP+-specific isocitrate dehydrogenases in Saccharomyces cerevisiae.
    Minard KI; Jennings GT; Loftus TM; Xuan D; McAlister-Henn L
    J Biol Chem; 1998 Nov; 273(47):31486-93. PubMed ID: 9813062
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Increasing NADH oxidation reduces overflow metabolism in Saccharomyces cerevisiae.
    Vemuri GN; Eiteman MA; McEwen JE; Olsson L; Nielsen J
    Proc Natl Acad Sci U S A; 2007 Feb; 104(7):2402-7. PubMed ID: 17287356
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Anaerobic and aerobic batch cultivations of Saccharomyces cerevisiae mutants impaired in glycerol synthesis.
    Nissen TL; Hamann CW; Kielland-Brandt MC; Nielsen J; Villadsen J
    Yeast; 2000 Mar; 16(5):463-74. PubMed ID: 10705374
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Differences in the management of intracellular redox state between wine yeast species dictate their fermentation performances and metabolite production.
    Tyibilika V; Setati ME; Bloem A; Divol B; Camarasa C
    Int J Food Microbiol; 2024 Feb; 411():110537. PubMed ID: 38150773
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of target genes to control acetate yield during aerobic fermentation with Saccharomyces cerevisiae.
    Curiel JA; Salvadó Z; Tronchoni J; Morales P; Rodrigues AJ; Quirós M; Gonzalez R
    Microb Cell Fact; 2016 Sep; 15(1):156. PubMed ID: 27627879
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sources of NADPH in yeast vary with carbon source.
    Minard KI; McAlister-Henn L
    J Biol Chem; 2005 Dec; 280(48):39890-6. PubMed ID: 16179340
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Application of 2H NMR to the study of natural site-specific hydrogen isotope transfer among substrate, medium, and glycerol in glucose fermentation with yeast.
    Pionnier S; Zhang BL
    Anal Biochem; 2002 Aug; 307(1):138-46. PubMed ID: 12137790
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Peroxisomal beta-oxidation of polyunsaturated fatty acids in Saccharomyces cerevisiae: isocitrate dehydrogenase provides NADPH for reduction of double bonds at even positions.
    van Roermund CW; Hettema EH; Kal AJ; van den Berg M; Tabak HF; Wanders RJ
    EMBO J; 1998 Feb; 17(3):677-87. PubMed ID: 9450993
    [TBL] [Abstract][Full Text] [Related]  

  • 12. NADPH/NADP+ ratio: regulatory implications in yeast glyoxylic acid cycle.
    Satrustegui J; Bautista J; Machado A
    Mol Cell Biochem; 1983; 51(2):123-7. PubMed ID: 6343836
    [TBL] [Abstract][Full Text] [Related]  

  • 13. IDP3 encodes a peroxisomal NADP-dependent isocitrate dehydrogenase required for the beta-oxidation of unsaturated fatty acids.
    Henke B; Girzalsky W; Berteaux-Lecellier V; Erdmann R
    J Biol Chem; 1998 Feb; 273(6):3702-11. PubMed ID: 9452501
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Natural abundance hydrogen isotope affiliation between the reactants and the products in glucose fermentation with yeast.
    Pionnier S; Robins RJ; Zhang BL
    J Agric Food Chem; 2003 Mar; 51(7):2076-82. PubMed ID: 12643676
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Determination of the Cytosolic NADPH/NADP Ratio in Saccharomyces cerevisiae using Shikimate Dehydrogenase as Sensor Reaction.
    Zhang J; ten Pierick A; van Rossum HM; Seifar RM; Ras C; Daran JM; Heijnen JJ; Wahl SA
    Sci Rep; 2015 Aug; 5():12846. PubMed ID: 26243542
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reprogramming Yeast Metabolism from Alcoholic Fermentation to Lipogenesis.
    Yu T; Zhou YJ; Huang M; Liu Q; Pereira R; David F; Nielsen J
    Cell; 2018 Sep; 174(6):1549-1558.e14. PubMed ID: 30100189
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Saccharomyces cerevisiae Cytosolic Thioredoxins Control Glycolysis, Lipid Metabolism, and Protein Biosynthesis under Wine-Making Conditions.
    Picazo C; McDonagh B; Peinado J; Bárcena JA; Matallana E; Aranda A
    Appl Environ Microbiol; 2019 Apr; 85(7):. PubMed ID: 30683739
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Influence of Growth Rate on 2H/1H Fractionation in Continuous Cultures of the Coccolithophorid Emiliania huxleyi and the Diatom Thalassiosira pseudonana.
    Sachs JP; Kawka OE
    PLoS One; 2015; 10(11):e0141643. PubMed ID: 26576007
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improving ethanol yield in acetate-reducing Saccharomyces cerevisiae by cofactor engineering of 6-phosphogluconate dehydrogenase and deletion of ALD6.
    Papapetridis I; van Dijk M; Dobbe AP; Metz B; Pronk JT; van Maris AJ
    Microb Cell Fact; 2016 Apr; 15():67. PubMed ID: 27118055
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Steady-state and transient-state analyses of aerobic fermentation in Saccharomyces kluyveri.
    Møller K; Bro C; Piskur J; Nielsen J; Olsson L
    FEMS Yeast Res; 2002 May; 2(2):233-44. PubMed ID: 12702311
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.