These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
199 related articles for article (PubMed ID: 38709925)
1. Cancer-stromal cell interactions in breast cancer brain metastases induce glycocalyx-mediated resistance to HER2-targeting therapies. Goyette MA; Stevens LE; DePinho CR; Seehawer M; Nishida J; Li Z; Wilde CM; Li R; Qiu X; Pyke AL; Zhao S; Lim K; Tender GS; Northey JJ; Riley NM; Long HW; Bertozzi CR; Weaver VM; Polyak K Proc Natl Acad Sci U S A; 2024 May; 121(20):e2322688121. PubMed ID: 38709925 [TBL] [Abstract][Full Text] [Related]
2. Neoadjuvant neratinib promotes ferroptosis and inhibits brain metastasis in a novel syngeneic model of spontaneous HER2 Nagpal A; Redvers RP; Ling X; Ayton S; Fuentes M; Tavancheh E; Diala I; Lalani A; Loi S; David S; Anderson RL; Smith Y; Merino D; Denoyer D; Pouliot N Breast Cancer Res; 2019 Aug; 21(1):94. PubMed ID: 31409375 [TBL] [Abstract][Full Text] [Related]
3. An heregulin-EGFR-HER3 autocrine signaling axis can mediate acquired lapatinib resistance in HER2+ breast cancer models. Xia W; Petricoin EF; Zhao S; Liu L; Osada T; Cheng Q; Wulfkuhle JD; Gwin WR; Yang X; Gallagher RI; Bacus S; Lyerly HK; Spector NL Breast Cancer Res; 2013; 15(5):R85. PubMed ID: 24044505 [TBL] [Abstract][Full Text] [Related]
4. A BRCA1 deficient-like signature is enriched in breast cancer brain metastases and predicts DNA damage-induced poly (ADP-ribose) polymerase inhibitor sensitivity. McMullin RP; Wittner BS; Yang C; Denton-Schneider BR; Hicks D; Singavarapu R; Moulis S; Lee J; Akbari MR; Narod SA; Aldape KD; Steeg PS; Ramaswamy S; Sgroi DC Breast Cancer Res; 2014 Mar; 16(2):R25. PubMed ID: 24625110 [TBL] [Abstract][Full Text] [Related]
5. YES1 activation induces acquired resistance to neratinib in HER2-amplified breast and lung cancers. Takeda T; Yamamoto H; Suzawa K; Tomida S; Miyauchi S; Araki K; Nakata K; Miura A; Namba K; Shien K; Soh J; Shien T; Kitamura Y; Sendo T; Toyooka S Cancer Sci; 2020 Mar; 111(3):849-856. PubMed ID: 31856375 [TBL] [Abstract][Full Text] [Related]
6. Pharmacodynamics, pharmacokinetics and clinical efficacy of neratinib in HER2-positive breast cancer and breast cancer with HER2 mutations. Kourie HR; Chaix M; Gombos A; Aftimos P; Awada A Expert Opin Drug Metab Toxicol; 2016 Aug; 12(8):947-57. PubMed ID: 27284682 [TBL] [Abstract][Full Text] [Related]
7. Neratinib overcomes trastuzumab resistance in HER2 amplified breast cancer. Canonici A; Gijsen M; Mullooly M; Bennett R; Bouguern N; Pedersen K; O'Brien NA; Roxanis I; Li JL; Bridge E; Finn R; Siamon D; McGowan P; Duffy MJ; O'Donovan N; Crown J; Kong A Oncotarget; 2013 Oct; 4(10):1592-605. PubMed ID: 24009064 [TBL] [Abstract][Full Text] [Related]
8. Neratinib is effective in breast tumors bearing both amplification and mutation of ERBB2 (HER2). Cocco E; Javier Carmona F; Razavi P; Won HH; Cai Y; Rossi V; Chan C; Cownie J; Soong J; Toska E; Shifman SG; Sarotto I; Savas P; Wick MJ; Papadopoulos KP; Moriarty A; Cutler RE; Avogadri-Connors F; Lalani AS; Bryce RP; Chandarlapaty S; Hyman DM; Solit DB; Boni V; Loi S; Baselga J; Berger MF; Montemurro F; Scaltriti M Sci Signal; 2018 Oct; 11(551):. PubMed ID: 30301790 [TBL] [Abstract][Full Text] [Related]
9. Development of the Tumor-Specific Antigen-Derived Synthetic Peptides as Potential Candidates for Targeting Breast and Other Possible Human Carcinomas. Okarvi SM; AlJammaz I Molecules; 2019 Aug; 24(17):. PubMed ID: 31470531 [TBL] [Abstract][Full Text] [Related]
10. Cooperation of neurotrophin receptor TrkB and Her2 in breast cancer cells facilitates brain metastases. Choy C; Ansari KI; Neman J; Hsu S; Duenas MJ; Li H; Vaidehi N; Jandial R Breast Cancer Res; 2017 Apr; 19(1):51. PubMed ID: 28446206 [TBL] [Abstract][Full Text] [Related]
11. Distinct apoptotic blocks mediate resistance to panHER inhibitors in HER2+ breast cancer cells. Karakas B; Ozmay Y; Basaga H; Gul O; Kutuk O Biochim Biophys Acta Mol Cell Res; 2018 Aug; 1865(8):1073-1087. PubMed ID: 29733883 [TBL] [Abstract][Full Text] [Related]
12. Effect of lapatinib on the outgrowth of metastatic breast cancer cells to the brain. Gril B; Palmieri D; Bronder JL; Herring JM; Vega-Valle E; Feigenbaum L; Liewehr DJ; Steinberg SM; Merino MJ; Rubin SD; Steeg PS J Natl Cancer Inst; 2008 Aug; 100(15):1092-103. PubMed ID: 18664652 [TBL] [Abstract][Full Text] [Related]
13. Human breast cancer cells harboring a gatekeeper T798M mutation in HER2 overexpress EGFR ligands and are sensitive to dual inhibition of EGFR and HER2. Rexer BN; Ghosh R; Narasanna A; Estrada MV; Chakrabarty A; Song Y; Engelman JA; Arteaga CL Clin Cancer Res; 2013 Oct; 19(19):5390-401. PubMed ID: 23948973 [TBL] [Abstract][Full Text] [Related]
14. Targeting CXCR1/2 significantly reduces breast cancer stem cell activity and increases the efficacy of inhibiting HER2 via HER2-dependent and -independent mechanisms. Singh JK; Farnie G; Bundred NJ; Simões BM; Shergill A; Landberg G; Howell SJ; Clarke RB Clin Cancer Res; 2013 Feb; 19(3):643-56. PubMed ID: 23149820 [TBL] [Abstract][Full Text] [Related]
15. Targeted dual degradation of HER2 and EGFR obliterates oncogenic signaling, overcomes therapy resistance, and inhibits metastatic lesions in HER2-positive breast cancer models. Yang L; Bhattacharya A; Peterson D; Li Y; Liu X; Marangoni E; Robila V; Zhang Y Drug Resist Updat; 2024 May; 74():101078. PubMed ID: 38503142 [TBL] [Abstract][Full Text] [Related]
16. EGFR and HER2 signaling in breast cancer brain metastasis. Sirkisoon SR; Carpenter RL; Rimkus T; Miller L; Metheny-Barlow L; Lo HW Front Biosci (Elite Ed); 2016 Jan; 8(2):245-63. PubMed ID: 26709660 [TBL] [Abstract][Full Text] [Related]
17. Targeting the MUC1-C oncoprotein downregulates HER2 activation and abrogates trastuzumab resistance in breast cancer cells. Raina D; Uchida Y; Kharbanda A; Rajabi H; Panchamoorthy G; Jin C; Kharbanda S; Scaltriti M; Baselga J; Kufe D Oncogene; 2014 Jun; 33(26):3422-31. PubMed ID: 23912457 [TBL] [Abstract][Full Text] [Related]
18. Lapatinib distribution in HER2 overexpressing experimental brain metastases of breast cancer. Taskar KS; Rudraraju V; Mittapalli RK; Samala R; Thorsheim HR; Lockman J; Gril B; Hua E; Palmieri D; Polli JW; Castellino S; Rubin SD; Lockman PR; Steeg PS; Smith QR Pharm Res; 2012 Mar; 29(3):770-81. PubMed ID: 22011930 [TBL] [Abstract][Full Text] [Related]
19. Allosteric Inhibition of HER2 by Moesin-Mimicking Compounds Targets HER2-Positive Cancers and Brain Metastases. Faure C; Djerbi-Bouillié R; Domingot A; Bouzinba-Segard H; Taouji S; Saidi Y; Bernard S; Carallis F; Rothe-Walther R; Lenormand JL; Chevet E; Bourdoulous S Cancer Res; 2021 Nov; 81(21):5464-5476. PubMed ID: 34493594 [TBL] [Abstract][Full Text] [Related]
20. Pazopanib reveals a role for tumor cell B-Raf in the prevention of HER2+ breast cancer brain metastasis. Gril B; Palmieri D; Qian Y; Smart D; Ileva L; Liewehr DJ; Steinberg SM; Steeg PS Clin Cancer Res; 2011 Jan; 17(1):142-53. PubMed ID: 21081656 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]