These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
140 related articles for article (PubMed ID: 38710353)
1. Predicting associations between CircRNA and diseases through structure-aware graph transformer and path-integral convolution. Wu J; Lu P; Zhang W Anal Biochem; 2024 Sep; 692():115554. PubMed ID: 38710353 [TBL] [Abstract][Full Text] [Related]
2. Prediction of circRNA-Disease Associations Based on the Combination of Multi-Head Graph Attention Network and Graph Convolutional Network. Cao R; He C; Wei P; Su Y; Xia J; Zheng C Biomolecules; 2022 Jul; 12(7):. PubMed ID: 35883487 [TBL] [Abstract][Full Text] [Related]
3. AMPCDA: Prediction of circRNA-disease associations by utilizing attention mechanisms on metapaths. Lu P; Zhang W; Wu J Comput Biol Chem; 2024 Feb; 108():107989. PubMed ID: 38016366 [TBL] [Abstract][Full Text] [Related]
4. Predicting CircRNA-Disease Associations via Feature Convolution Learning With Heterogeneous Graph Attention Network. Peng L; Yang C; Chen Y; Liu W IEEE J Biomed Health Inform; 2023 Jun; 27(6):3072-3082. PubMed ID: 37030839 [TBL] [Abstract][Full Text] [Related]
5. DeepWalk-aware graph attention networks with CNN for circRNA-drug sensitivity association identification. Li G; Li Y; Liang C; Luo J Brief Funct Genomics; 2024 Jul; 23(4):418-428. PubMed ID: 38061910 [TBL] [Abstract][Full Text] [Related]
6. Inferring disease-associated circRNAs by multi-source aggregation based on heterogeneous graph neural network. Lu C; Zhang L; Zeng M; Lan W; Duan G; Wang J Brief Bioinform; 2023 Jan; 24(1):. PubMed ID: 36572658 [TBL] [Abstract][Full Text] [Related]
7. Node-adaptive graph Transformer with structural encoding for accurate and robust lncRNA-disease association prediction. Li G; Bai P; Liang C; Luo J BMC Genomics; 2024 Jan; 25(1):73. PubMed ID: 38233788 [TBL] [Abstract][Full Text] [Related]
8. Exploring potential circRNA biomarkers for cancers based on double-line heterogeneous graph representation learning. Zhang Y; Wang Z; Wei H; Chen M BMC Med Inform Decis Mak; 2024 Jun; 24(1):159. PubMed ID: 38844961 [TBL] [Abstract][Full Text] [Related]
9. MPCLCDA: predicting circRNA-disease associations by using automatically selected meta-path and contrastive learning. Liu W; Tang T; Lu X; Fu X; Yang Y; Peng L Brief Bioinform; 2023 Jul; 24(4):. PubMed ID: 37328701 [TBL] [Abstract][Full Text] [Related]
10. Learning global dependencies and multi-semantics within heterogeneous graph for predicting disease-related lncRNAs. Xuan P; Wang S; Cui H; Zhao Y; Zhang T; Wu P Brief Bioinform; 2022 Sep; 23(5):. PubMed ID: 36088549 [TBL] [Abstract][Full Text] [Related]
11. RDGAN: Prediction of circRNA-Disease Associations via Resistance Distance and Graph Attention Network. Lu P; Wang Y IEEE/ACM Trans Comput Biol Bioinform; 2024; 21(5):1445-1457. PubMed ID: 38787672 [TBL] [Abstract][Full Text] [Related]
12. IGNSCDA: Predicting CircRNA-Disease Associations Based on Improved Graph Convolutional Network and Negative Sampling. Lan W; Dong Y; Chen Q; Liu J; Wang J; Chen YP; Pan S IEEE/ACM Trans Comput Biol Bioinform; 2022; 19(6):3530-3538. PubMed ID: 34506289 [TBL] [Abstract][Full Text] [Related]
13. SGFCCDA: Scale Graph Convolutional Networks and Feature Convolution for circRNA-Disease Association Prediction. Shang J; Zhao L; He X; Meng X; Zhang L; Ge D; Li F; Liu JX IEEE J Biomed Health Inform; 2024 Nov; 28(11):7006-7014. PubMed ID: 39250355 [TBL] [Abstract][Full Text] [Related]
14. Predicting CircRNA disease associations using novel node classification and link prediction models on Graph Convolutional Networks. Bamunu Mudiyanselage T; Lei X; Senanayake N; Zhang Y; Pan Y Methods; 2022 Feb; 198():32-44. PubMed ID: 34748953 [TBL] [Abstract][Full Text] [Related]
15. GATNNCDA: A Method Based on Graph Attention Network and Multi-Layer Neural Network for Predicting circRNA-Disease Associations. Ji C; Liu Z; Wang Y; Ni J; Zheng C Int J Mol Sci; 2021 Aug; 22(16):. PubMed ID: 34445212 [TBL] [Abstract][Full Text] [Related]
16. GGAECDA: Predicting circRNA-disease associations using graph autoencoder based on graph representation learning. Li G; Lin Y; Luo J; Xiao Q; Liang C Comput Biol Chem; 2022 Aug; 99():107722. PubMed ID: 35810557 [TBL] [Abstract][Full Text] [Related]
17. LMGATCDA: Graph Neural Network With Labeling Trick for Predicting circRNA-Disease Associations. Wang W; Han P; Li Z; Nie R; Wang K; Wang L; Liao H IEEE/ACM Trans Comput Biol Bioinform; 2024; 21(2):289-300. PubMed ID: 38231821 [TBL] [Abstract][Full Text] [Related]
18. GCNCDA: A new method for predicting circRNA-disease associations based on Graph Convolutional Network Algorithm. Wang L; You ZH; Li YM; Zheng K; Huang YA PLoS Comput Biol; 2020 May; 16(5):e1007568. PubMed ID: 32433655 [TBL] [Abstract][Full Text] [Related]
19. Convolution Neural Networks Using Deep Matrix Factorization for Predicting Circrna-Disease Association. Liu ZH; Ji CM; Ni JC; Wang YT; Qiao LJ; Zheng CH IEEE/ACM Trans Comput Biol Bioinform; 2023; 20(1):277-284. PubMed ID: 34951853 [TBL] [Abstract][Full Text] [Related]
20. DRGCNCDA: Predicting circRNA-disease interactions based on knowledge graph and disentangled relational graph convolutional network. Lan W; Zhang H; Dong Y; Chen Q; Cao J; Peng W; Liu J; Li M Methods; 2022 Dec; 208():35-41. PubMed ID: 36280134 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]