These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 38710576)

  • 1. Chitosan-based electroconductive inks without chemical reaction for cost-effective and versatile 3D printing for electromagnetic interference (EMI) shielding and strain-sensing applications.
    Sanandiya ND; Pai AR; Seyedin S; Tang F; Thomas S; Xie F
    Carbohydr Polym; 2024 Aug; 337():122161. PubMed ID: 38710576
    [TBL] [Abstract][Full Text] [Related]  

  • 2. 3D printing of ultralight MWCNT@OCNF porous scaffolds for high-efficiency electromagnetic interference shielding.
    Jiang Y; Xu Y; Deng S; Ren H; Tao X; Liao M; Sun J; Shi S
    Carbohydr Polym; 2023 Aug; 314():120945. PubMed ID: 37173045
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Surfactant-Mediated Highly Conductive Cellulosic Inks for High-Resolution 3D Printing of Robust and Structured Electromagnetic Interference Shielding Aerogels.
    Amini M; Hosseini H; Dutta S; Wuttke S; Kamkar M; Arjmand M
    ACS Appl Mater Interfaces; 2023 Nov; 15(47):54753-54765. PubMed ID: 37787508
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Direct Ink Writing of Highly Conductive MXene Frames for Tunable Electromagnetic Interference Shielding and Electromagnetic Wave-Induced Thermochromism.
    Wu X; Tu T; Dai Y; Tang P; Zhang Y; Deng Z; Li L; Zhang HB; Yu ZZ
    Nanomicro Lett; 2021 Jun; 13(1):148. PubMed ID: 34156564
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Direct Ink Writing of Low-Concentration MXene/Aramid Nanofiber Inks for Tunable Electromagnetic Shielding and Infrared Anticounterfeiting Applications.
    Peng S; Liu C; Tan J; Zhang P; Zou J; Wang Y; Ma Y; Zhang X; Nan CW; Li BW
    ACS Appl Mater Interfaces; 2024 May; 16(19):25113-25123. PubMed ID: 38693723
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Current Status in the Utilization of Biobased Polymers for 3D Printing Process: A Systematic Review of the Materials, Processes, and Challenges.
    Shahbazi M; Jäger H
    ACS Appl Bio Mater; 2021 Jan; 4(1):325-369. PubMed ID: 35014287
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Printability of Poly(lactic acid) Ink by Embedded 3D Printing
    Karyappa R; Liu H; Zhu Q; Hashimoto M
    ACS Appl Mater Interfaces; 2023 May; 15(17):21575-21584. PubMed ID: 37078653
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effect of triglycerol diacrylate on the printability and properties of UV curable, bio-based nanohydroxyapatite composites.
    Diederichs EV; Mondal D; Patil H; Gorbet M; Willett TL
    J Mech Behav Biomed Mater; 2024 May; 153():106499. PubMed ID: 38490049
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Composite Inks for Extrusion Printing of Biological and Biomedical Constructs.
    Ravanbakhsh H; Bao G; Luo Z; Mongeau LG; Zhang YS
    ACS Biomater Sci Eng; 2021 Sep; 7(9):4009-4026. PubMed ID: 34510905
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The orientation and inhomogeneous distribution of carbon nanofibers and distinctive internal structure in polymer composites induced by 3D-printing enabling electromagnetic shielding regulation.
    Wu T; Huan X; Zhang H; Wu L; Sui G; Yang X
    J Colloid Interface Sci; 2023 May; 638():392-402. PubMed ID: 36758252
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Toughening robocast chitosan/biphasic calcium phosphate composite scaffolds with silk fibroin: Tuning printable inks and scaffold structure for bone regeneration.
    Torres PMC; Ribeiro N; Nunes CMM; Rodrigues AFM; Sousa A; Olhero SM
    Biomater Adv; 2022 Mar; 134():112690. PubMed ID: 35581087
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Aqueous MXene/Xanthan Gum Hybrid Inks for Screen-Printing Electromagnetic Shielding, Joule Heater, and Piezoresistive Sensor.
    Wu H; Xie Y; Ma Y; Zhang B; Xia B; Zhang P; Qian W; He D; Zhang X; Li BW; Nan CW
    Small; 2022 Apr; 18(16):e2107087. PubMed ID: 35274448
    [TBL] [Abstract][Full Text] [Related]  

  • 13. 3D printed lightweight honeycomb vent structures with subsequent coating of silver nanowires for efficient electromagnetic interference (EMI) shielding.
    Abbas R; Rehman UU; Bilal A; Sultan N; Ghazanfar U; Ali T; Nadeem M
    Heliyon; 2024 May; 10(9):e30429. PubMed ID: 38737227
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lignin: A multi-faceted role/function in 3D printing inks.
    Yang J; An X; Lu B; Cao H; Cheng Z; Tong X; Liu H; Ni Y
    Int J Biol Macromol; 2024 May; 267(Pt 2):131364. PubMed ID: 38583844
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Design of a Waterborne Polyurethane-Urea Ink for Direct Ink Writing 3D Printing.
    Vadillo J; Larraza I; Calvo-Correas T; Gabilondo N; Derail C; Eceiza A
    Materials (Basel); 2021 Jun; 14(12):. PubMed ID: 34198656
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Eucalyptus bleached kraft pulp-ionic liquid inks for 3D printing of ionogels and hydrogels.
    Hopson C; Rigual V; Alonso MV; Oliet M; Rodriguez F
    Carbohydr Polym; 2023 Aug; 313():120897. PubMed ID: 37182980
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High-Precision Printing of Flexible MXene Patterns for Dynamically Tunable Electromagnetic Interference Shielding Performance.
    Li L; Qi CZ; Chen M; He P; Min P; Zhou X; Yu ZZ; Zhang HB
    ACS Appl Mater Interfaces; 2024 Mar; 16(10):13082-13090. PubMed ID: 38416690
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 3D Printing of Ultralow-Concentration 2D Nanomaterial Inks for Multifunctional Architectures.
    Li L; Deng Z; Chen M; Yu ZZ; Russell TP; Zhang HB
    Nano Lett; 2023 Jan; 23(1):155-162. PubMed ID: 36562701
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Balancing Functionality and Printability: High-Loading Polymer Resins for Direct Ink Writing.
    Legett SA; Torres X; Schmalzer AM; Pacheco A; Stockdale JR; Talley S; Robison T; Labouriau A
    Polymers (Basel); 2022 Nov; 14(21):. PubMed ID: 36365651
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Holocellulose Nanofibril-Assisted Intercalation and Stabilization of Ti
    Chen Y; Li Y; Liu Y; Chen P; Zhang C; Qi H
    ACS Appl Mater Interfaces; 2021 Aug; 13(30):36221-36231. PubMed ID: 34286583
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.