These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
162 related articles for article (PubMed ID: 38710726)
1. Automated machine learning model for fundus image classification by health-care professionals with no coding experience. Zago Ribeiro L; Nakayama LF; Malerbi FK; Regatieri CVS Sci Rep; 2024 May; 14(1):10395. PubMed ID: 38710726 [TBL] [Abstract][Full Text] [Related]
2. Development and Validation of a Deep Learning Algorithm for Detection of Diabetic Retinopathy in Retinal Fundus Photographs. Gulshan V; Peng L; Coram M; Stumpe MC; Wu D; Narayanaswamy A; Venugopalan S; Widner K; Madams T; Cuadros J; Kim R; Raman R; Nelson PC; Mega JL; Webster DR JAMA; 2016 Dec; 316(22):2402-2410. PubMed ID: 27898976 [TBL] [Abstract][Full Text] [Related]
3. Automated deep learning design for medical image classification by health-care professionals with no coding experience: a feasibility study. Faes L; Wagner SK; Fu DJ; Liu X; Korot E; Ledsam JR; Back T; Chopra R; Pontikos N; Kern C; Moraes G; Schmid MK; Sim D; Balaskas K; Bachmann LM; Denniston AK; Keane PA Lancet Digit Health; 2019 Sep; 1(5):e232-e242. PubMed ID: 33323271 [TBL] [Abstract][Full Text] [Related]
4. Reproduction study using public data of: Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs. Voets M; Møllersen K; Bongo LA PLoS One; 2019; 14(6):e0217541. PubMed ID: 31170223 [TBL] [Abstract][Full Text] [Related]
5. Development and Validation of Deep Learning Models for Screening Multiple Abnormal Findings in Retinal Fundus Images. Son J; Shin JY; Kim HD; Jung KH; Park KH; Park SJ Ophthalmology; 2020 Jan; 127(1):85-94. PubMed ID: 31281057 [TBL] [Abstract][Full Text] [Related]
9. Deep learning-based automated detection for diabetic retinopathy and diabetic macular oedema in retinal fundus photographs. Li F; Wang Y; Xu T; Dong L; Yan L; Jiang M; Zhang X; Jiang H; Wu Z; Zou H Eye (Lond); 2022 Jul; 36(7):1433-1441. PubMed ID: 34211137 [TBL] [Abstract][Full Text] [Related]
10. A User-friendly Approach for the Diagnosis of Diabetic Retinopathy Using ChatGPT and Automated Machine Learning. Mohammadi SS; Nguyen QD Ophthalmol Sci; 2024; 4(4):100495. PubMed ID: 38690313 [TBL] [Abstract][Full Text] [Related]
11. Deep Learning Fundus Image Analysis for Diabetic Retinopathy and Macular Edema Grading. Sahlsten J; Jaskari J; Kivinen J; Turunen L; Jaanio E; Hietala K; Kaski K Sci Rep; 2019 Jul; 9(1):10750. PubMed ID: 31341220 [TBL] [Abstract][Full Text] [Related]
12. Automated Identification of Diabetic Retinopathy Using Deep Learning. Gargeya R; Leng T Ophthalmology; 2017 Jul; 124(7):962-969. PubMed ID: 28359545 [TBL] [Abstract][Full Text] [Related]
13. An interpretable multiple-instance approach for the detection of referable diabetic retinopathy in fundus images. Papadopoulos A; Topouzis F; Delopoulos A Sci Rep; 2021 Jul; 11(1):14326. PubMed ID: 34253799 [TBL] [Abstract][Full Text] [Related]
14. Deep Learning Predicts OCT Measures of Diabetic Macular Thickening From Color Fundus Photographs. Arcadu F; Benmansour F; Maunz A; Michon J; Haskova Z; McClintock D; Adamis AP; Willis JR; Prunotto M Invest Ophthalmol Vis Sci; 2019 Mar; 60(4):852-857. PubMed ID: 30821810 [TBL] [Abstract][Full Text] [Related]
15. Fully Automated Detection and Quantification of Macular Fluid in OCT Using Deep Learning. Schlegl T; Waldstein SM; Bogunovic H; Endstraßer F; Sadeghipour A; Philip AM; Podkowinski D; Gerendas BS; Langs G; Schmidt-Erfurth U Ophthalmology; 2018 Apr; 125(4):549-558. PubMed ID: 29224926 [TBL] [Abstract][Full Text] [Related]
16. Development and international validation of custom-engineered and code-free deep-learning models for detection of plus disease in retinopathy of prematurity: a retrospective study. Wagner SK; Liefers B; Radia M; Zhang G; Struyven R; Faes L; Than J; Balal S; Hennings C; Kilduff C; Pooprasert P; Glinton S; Arunakirinathan M; Giannakis P; Braimah IZ; Ahmed ISH; Al-Feky M; Khalid H; Ferraz D; Vieira J; Jorge R; Husain S; Ravelo J; Hinds AM; Henderson R; Patel HI; Ostmo S; Campbell JP; Pontikos N; Patel PJ; Keane PA; Adams G; Balaskas K Lancet Digit Health; 2023 Jun; 5(6):e340-e349. PubMed ID: 37088692 [TBL] [Abstract][Full Text] [Related]
17. Bimodal learning via trilogy of skip-connection deep networks for diabetic retinopathy risk progression identification. Hua CH; Huynh-The T; Kim K; Yu SY; Le-Tien T; Park GH; Bang J; Khan WA; Bae SH; Lee S Int J Med Inform; 2019 Dec; 132():103926. PubMed ID: 31605882 [TBL] [Abstract][Full Text] [Related]
18. Predicting sex from retinal fundus photographs using automated deep learning. Korot E; Pontikos N; Liu X; Wagner SK; Faes L; Huemer J; Balaskas K; Denniston AK; Khawaja A; Keane PA Sci Rep; 2021 May; 11(1):10286. PubMed ID: 33986429 [TBL] [Abstract][Full Text] [Related]
19. Deep Learning Automated Detection of Reticular Pseudodrusen from Fundus Autofluorescence Images or Color Fundus Photographs in AREDS2. Keenan TDL; Chen Q; Peng Y; Domalpally A; Agrón E; Hwang CK; Thavikulwat AT; Lee DH; Li D; Wong WT; Lu Z; Chew EY Ophthalmology; 2020 Dec; 127(12):1674-1687. PubMed ID: 32447042 [TBL] [Abstract][Full Text] [Related]
20. Deep learning-based detection of diabetic macular edema using optical coherence tomography and fundus images: A meta-analysis. Manikandan S; Raman R; Rajalakshmi R; Tamilselvi S; Surya RJ Indian J Ophthalmol; 2023 May; 71(5):1783-1796. PubMed ID: 37203031 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]