These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 38710845)

  • 1. Innovative approaches for amino acid production via consolidated bioprocessing of agricultural biomass.
    Chu PH; Jenol MA; Phang LY; Ibrahim MF; Purkan P; Hadi S; Abd-Aziz S
    Environ Sci Pollut Res Int; 2024 May; 31(23):33303-33324. PubMed ID: 38710845
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Metagenomic psychrohalophilic xylanase from camel rumen investigated for bioethanol production from wheat bran using Bacillus subtilis AP.
    Rajabi M; Nourisanami F; Ghadikolaei KK; Changizian M; Noghabi KA; Zahiri HS
    Sci Rep; 2022 May; 12(1):8152. PubMed ID: 35581279
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Consolidated bioprocessing for bioethanol production by metabolically engineered Bacillus subtilis strains.
    Maleki F; Changizian M; Zolfaghari N; Rajaei S; Noghabi KA; Zahiri HS
    Sci Rep; 2021 Jul; 11(1):13731. PubMed ID: 34215768
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Resource recovery of lignocellulosic biomass waste into lactic acid - Trends to sustain cleaner production.
    Esquivel-Hernández DA; García-Pérez JS; López-Pacheco IY; Iqbal HMN; Parra-Saldívar R
    J Environ Manage; 2022 Jan; 301():113925. PubMed ID: 34731961
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Designing industrial yeasts for the consolidated bioprocessing of starchy biomass to ethanol.
    Favaro L; Jooste T; Basaglia M; Rose SH; Saayman M; Görgens JF; Casella S; van Zyl WH
    Bioengineered; 2013; 4(2):97-102. PubMed ID: 22989992
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Consolidated bio-saccharification: Leading lignocellulose bioconversion into the real world.
    Liu YJ; Li B; Feng Y; Cui Q
    Biotechnol Adv; 2020; 40():107535. PubMed ID: 32105675
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Consolidated conversion of protein waste into biofuels and ammonia using Bacillus subtilis.
    Choi KY; Wernick DG; Tat CA; Liao JC
    Metab Eng; 2014 May; 23():53-61. PubMed ID: 24566040
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metabolic engineering strategies for consolidated production of lactic acid from lignocellulosic biomass.
    Mazzoli R
    Biotechnol Appl Biochem; 2020 Jan; 67(1):61-72. PubMed ID: 31814156
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Direct fungal fermentation of lignocellulosic biomass into itaconic, fumaric, and malic acids: current and future prospects.
    Mondala AH
    J Ind Microbiol Biotechnol; 2015 Apr; 42(4):487-506. PubMed ID: 25557737
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Techno-economic assessment of bioethanol production from lignocellulose by consortium-based consolidated bioprocessing at industrial scale.
    Dempfle D; Kröcher O; Studer MH
    N Biotechnol; 2021 Nov; 65():53-60. PubMed ID: 34343714
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Production of bioethanol from food waste: Status and perspectives.
    Singh A; Singhania RR; Soam S; Chen CW; Haldar D; Varjani S; Chang JS; Dong CD; Patel AK
    Bioresour Technol; 2022 Sep; 360():127651. PubMed ID: 35870673
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Engineered co-culture for consolidated production of phenylpropanoids directly from aromatic-rich biomass.
    Chacόn M; Percival E; Bugg TDH; Dixon N
    Bioresour Technol; 2024 Jan; 391(Pt A):129935. PubMed ID: 37923228
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Production of butanol from starch-based waste packing peanuts and agricultural waste.
    Jesse TW; Ezeji TC; Qureshi N; Blaschek HP
    J Ind Microbiol Biotechnol; 2002 Sep; 29(3):117-23. PubMed ID: 12242632
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Consolidated bioprocessing of corn cob-derived hemicellulose: engineered industrial
    Cunha JT; Romaní A; Inokuma K; Johansson B; Hasunuma T; Kondo A; Domingues L
    Biotechnol Biofuels; 2020; 13():138. PubMed ID: 32782474
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Improved
    Wen Z; Ledesma-Amaro R; Lin J; Jiang Y; Yang S
    Appl Environ Microbiol; 2019 Apr; 85(7):. PubMed ID: 30658972
    [No Abstract]   [Full Text] [Related]  

  • 16. Fermentative conversion of unpretreated plant biomass: A thermophilic threshold for indigenous microbial growth.
    Bing RG; Carey MJ; Laemthong T; Willard DJ; Crosby JR; Sulis DB; Wang JP; Adams MWW; Kelly RM
    Bioresour Technol; 2023 Jan; 367():128275. PubMed ID: 36347479
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bioprocessing of bio-based chemicals produced from lignocellulosic feedstocks.
    Kawaguchi H; Hasunuma T; Ogino C; Kondo A
    Curr Opin Biotechnol; 2016 Dec; 42():30-39. PubMed ID: 26970511
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A minimal set of bacterial cellulases for consolidated bioprocessing of lignocellulose.
    Liao H; Zhang XZ; Rollin JA; Zhang YH
    Biotechnol J; 2011 Nov; 6(11):1409-18. PubMed ID: 21751395
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Second generation bioethanol potential from selected Malaysia's biodiversity biomasses: A review.
    Aditiya HB; Chong WT; Mahlia TM; Sebayang AH; Berawi MA; Nur H
    Waste Manag; 2016 Jan; 47(Pt A):46-61. PubMed ID: 26253329
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Unveiling malic acid biorefinery: Comprehensive insights into feedstocks, microbial strains, and metabolic pathways.
    Xu B; Zhang W; Zhao E; Hong J; Chen X; Wei Z; Li X
    Bioresour Technol; 2024 Feb; 394():130265. PubMed ID: 38160850
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.