These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 38710845)

  • 21. Sustainable media feedstocks for cellular agriculture.
    Grossmann L
    Biotechnol Adv; 2024; 73():108367. PubMed ID: 38679340
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Biochemical Conversion Processes of Lignocellulosic Biomass to Fuels and Chemicals - A Review.
    Brethauer S; Studer MH
    Chimia (Aarau); 2015; 69(10):572-81. PubMed ID: 26598400
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Isolation and Screening of Microorganisms for the Effective Pretreatment of Lignocellulosic Agricultural Wastes.
    Zhang Z; Shah AM; Mohamed H; Tsiklauri N; Song Y
    Biomed Res Int; 2021; 2021():5514745. PubMed ID: 34604384
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Conversion of Agricultural Streams and Food-Processing By-Products to Value-Added Compounds Using Filamentous Fungi.
    Chan LG; Cohen JL; de Moura Bell JMLN
    Annu Rev Food Sci Technol; 2018 Mar; 9():503-523. PubMed ID: 29328807
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Lignocellulosic biomass fertilizers: Production, characterization, and agri-applications.
    Izydorczyk G; Skrzypczak D; Mironiuk M; Mikula K; Samoraj M; Gil F; Taf R; Moustakas K; Chojnacka K
    Sci Total Environ; 2024 May; 923():171343. PubMed ID: 38438048
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Perspectives and new directions for the production of bioethanol using consolidated bioprocessing of lignocellulose.
    Xu Q; Singh A; Himmel ME
    Curr Opin Biotechnol; 2009 Jun; 20(3):364-71. PubMed ID: 19520566
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Consolidated Bioprocessing: Synthetic Biology Routes to Fuels and Fine Chemicals.
    Banner A; Toogood HS; Scrutton NS
    Microorganisms; 2021 May; 9(5):. PubMed ID: 34069865
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Feasibilities of consolidated bioprocessing microbes: from pretreatment to biofuel production.
    Parisutham V; Kim TH; Lee SK
    Bioresour Technol; 2014 Jun; 161():431-40. PubMed ID: 24745899
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Bioprospecting microbial hosts to valorize lignocellulose biomass - Environmental perspectives and value-added bioproducts.
    Lu H; Yadav V; Bilal M; Iqbal HMN
    Chemosphere; 2022 Feb; 288(Pt 2):132574. PubMed ID: 34656619
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Integrated lactic acid production from lignocellulosic agricultural wastes under thermal conditions.
    Liu YJ; Zhang Y; Chi F; Chen C; Wan W; Feng Y; Song X; Cui Q
    J Environ Manage; 2023 Sep; 342():118281. PubMed ID: 37290309
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Bioconversion of non-food corn biomass to polyol esters of fatty acid and single-cell oils.
    Liu GL; Bu XY; Chen C; Fu C; Chi Z; Kosugi A; Cui Q; Chi ZM; Liu YJ
    Biotechnol Biofuels Bioprod; 2023 Jan; 16(1):9. PubMed ID: 36650607
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Fungal-mediated consolidated bioprocessing: the potential of Fusarium oxysporum for the lignocellulosic ethanol industry.
    Ali SS; Nugent B; Mullins E; Doohan FM
    AMB Express; 2016 Mar; 6(1):13. PubMed ID: 26888202
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Consolidated bioprocessing performance of Thermoanaerobacterium thermosaccharolyticum M18 on fungal pretreated cornstalk for enhanced hydrogen production.
    Zhao L; Cao GL; Wang AJ; Ren HY; Zhang K; Ren NQ
    Biotechnol Biofuels; 2014; 7(1):178. PubMed ID: 25648837
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Exponential fed-batch strategy for enhancing biosurfactant production by Bacillus subtilis.
    Amin GA
    Water Sci Technol; 2014; 70(2):234-40. PubMed ID: 25051469
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Biochar from agricultural wastes: Environmental sustainability, economic viability and the potential as a negative emissions technology in Malaysia.
    Saharudin DM; Jeswani HK; Azapagic A
    Sci Total Environ; 2024 Apr; 919():170266. PubMed ID: 38253094
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Agricultural waste management strategies for environmental sustainability.
    Koul B; Yakoob M; Shah MP
    Environ Res; 2022 Apr; 206():112285. PubMed ID: 34710442
    [TBL] [Abstract][Full Text] [Related]  

  • 37. An overview of biomass thermochemical conversion technologies in Malaysia.
    Chan YH; Cheah KW; How BS; Loy ACM; Shahbaz M; Singh HKG; Yusuf NR; Shuhaili AFA; Yusup S; Ghani WAWAK; Rambli J; Kansha Y; Lam HL; Hong BH; Ngan SL
    Sci Total Environ; 2019 Aug; 680():105-123. PubMed ID: 31100662
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Valorization of chicken feather waste using recombinant bacillus subtilis cells by solid-state fermentation for soluble proteins and serine alkaline protease production.
    El Salamony DH; Salah Eldin Hassouna M; Zaghloul TI; Moustafa Abdallah H
    Bioresour Technol; 2024 Feb; 393():130110. PubMed ID: 38040301
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Conversion of agroindustrial residues for high poly(γ-glutamic acid) production by Bacillus subtilis NX-2 via solid-state fermentation.
    Tang B; Xu H; Xu Z; Xu C; Xu Z; Lei P; Qiu Y; Liang J; Feng X
    Bioresour Technol; 2015 Apr; 181():351-4. PubMed ID: 25670398
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Efficient lactic acid production from dilute acid-pretreated lignocellulosic biomass by a synthetic consortium of engineered Pseudomonas putida and Bacillus coagulans.
    Zou L; Ouyang S; Hu Y; Zheng Z; Ouyang J
    Biotechnol Biofuels; 2021 Nov; 14(1):227. PubMed ID: 34838093
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.