These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
126 related articles for article (PubMed ID: 38710847)
1. Computational study of the performance of a solar dryer for improvement in the shelf life of the food materials. Sengar M; Singh D; Mishra PK; Singh D; Giri BS Environ Sci Pollut Res Int; 2024 May; 31(23):34550-34557. PubMed ID: 38710847 [TBL] [Abstract][Full Text] [Related]
2. Performance analysis of a novel thermal energy storage integrated solar dryer for drying of coconuts. Radhakrishnan Govindan G; Sattanathan M; Muthiah M; Ranjitharamasamy SP; Athikesavan MM Environ Sci Pollut Res Int; 2022 May; 29(23):35230-35240. PubMed ID: 35050476 [TBL] [Abstract][Full Text] [Related]
3. Experimental investigation of modified indirect solar dryer with integrated thermal storage material for drying of dhekia (Diplazium esculentum) fern. Saikia D; Nayak PK; Krishnan KR; Kondareddy R; Lakshmi DVN Environ Sci Pollut Res Int; 2024 Mar; 31(12):18143-18156. PubMed ID: 36656481 [TBL] [Abstract][Full Text] [Related]
4. Experimental investigation and energy-exergy-environmental-economic analysis of modified indirect solar dual collector dryer while drying myrobalan slices. Kondareddy R; Nayak PK; Krishnan KR; Deka D; Kumar KR Environ Sci Pollut Res Int; 2024 Jun; 31(27):38527-38541. PubMed ID: 37261693 [TBL] [Abstract][Full Text] [Related]
5. Drying characteristics of thin layer of potato (Solanum tuberosum): experimental and computational studies. Singh D; Sengar M; Patel SK; Kumar D; Pal D; Giri BS; Singh D Environ Sci Pollut Res Int; 2024 Jun; 31(27):38658-38675. PubMed ID: 36622610 [TBL] [Abstract][Full Text] [Related]
6. Efficient solar drying techniques: a review. Jangde PK; Singh A; Arjunan TV Environ Sci Pollut Res Int; 2022 Jul; 29(34):50970-50983. PubMed ID: 34374011 [TBL] [Abstract][Full Text] [Related]
7. Assessment of a LPG hybrid solar dryer assisted with smart air circulation system for drying basil leaves. Khater EG; Bahnasawy AH; Oraiath AAT; Alhag SK; Al-Shuraym LA; Moustapha ME; Elwakeel AE; Elbeltagi A; Salem A; Metwally KA; Abdalla MAI; Hussein MM; Abdeen MA Sci Rep; 2024 Oct; 14(1):23922. PubMed ID: 39397051 [TBL] [Abstract][Full Text] [Related]
8. Experimental investigation of an indirect solar dryer with PCM-integrated solar collector as a thermal energy storage medium. Bareen A; Dash S; Kalita P; Dash KK Environ Sci Pollut Res Int; 2024 Mar; 31(12):18209-18225. PubMed ID: 37041357 [TBL] [Abstract][Full Text] [Related]
9. Experimental studies on natural convection open and closed solar drying using external reflector. Kabeel AE; Dharmadurai PDL; Vasanthaseelan S; Sathyamurthy R; Ramani B; Manokar AM; Chamkha A Environ Sci Pollut Res Int; 2022 Jan; 29(1):1391-1400. PubMed ID: 34355324 [TBL] [Abstract][Full Text] [Related]
10. Eco-friendly drying techniques: a comparison of solar, biomass, and hybrid dryers. Prabhu N; Saravanan D; Kumarasamy S Environ Sci Pollut Res Int; 2023 Sep; 30(42):95086-95105. PubMed ID: 37582893 [TBL] [Abstract][Full Text] [Related]
11. Investigation of thermal performance, drying characteristics and environomical analysis: direct flow evacuated tube solar drying of okra. Yadav DK; Arora VK; Yadav V Environ Sci Pollut Res Int; 2024 May; 31(23):34214-34233. PubMed ID: 38700773 [TBL] [Abstract][Full Text] [Related]
12. Development and Performance Evaluation of a Novel Solar Dryer Integrated with Thermal Energy Storage System for Drying of Agricultural Products. Rulazi EL; Marwa J; Kichonge B; Kivevele T ACS Omega; 2023 Nov; 8(45):43304-43317. PubMed ID: 38024705 [TBL] [Abstract][Full Text] [Related]
13. Assessment of energy, exergy, environmental, and economic study of an evacuated tube solar dryer for drying Krishna Tulsi. Rao TSSB; Sivalingam M Environ Sci Pollut Res Int; 2023 May; 30(25):67351-67367. PubMed ID: 37103704 [TBL] [Abstract][Full Text] [Related]
14. Flat micro heat pipe-based shell and tube storage unit for indirect solar dryer: a pilot study. Abdelkader TK; El Salem A; Zhang Y; Gaballah ES; Refai M; Torki M; Fan Q Environ Sci Pollut Res Int; 2024 Jul; 31(34):46385-46396. PubMed ID: 37269524 [TBL] [Abstract][Full Text] [Related]
15. The effect of psychrometry on the performance of a solar collector. Dhaundiyal A; Gebremicheal GH Environ Sci Pollut Res Int; 2022 Feb; 29(9):13445-13458. PubMed ID: 34595710 [TBL] [Abstract][Full Text] [Related]
16. Comprehensive review on ideas, designs and current techniques in solar dryer for food applications. Naveenkumar R; Ravichandran M; Harish R; Ruskin JJ; Pozhingiyarasan N; Kolanjinathan A Environ Sci Pollut Res Int; 2023 Sep; 30(41):93435-93461. PubMed ID: 37561295 [TBL] [Abstract][Full Text] [Related]
17. Development and evaluation of a hybrid smart solar dryer. Ibrahim A; Elsebaee I; Amer A; Aboelasaad G; El-Bediwy A; El-Kholy M J Food Sci; 2023 Sep; 88(9):3859-3878. PubMed ID: 37530625 [TBL] [Abstract][Full Text] [Related]
18. Numerical characterisation of one-step and three-step solar air heating collectors used for cocoa bean solar drying. Orbegoso EM; Saavedra R; Marcelo D; La Madrid R J Environ Manage; 2017 Dec; 203(Pt 3):1080-1094. PubMed ID: 28728972 [TBL] [Abstract][Full Text] [Related]
19. Development of FE modeling for hybrid greenhouse dryer for potato chips drying. Kumar L; Prakash O J Food Sci; 2023 May; 88(5):1800-1815. PubMed ID: 36939718 [TBL] [Abstract][Full Text] [Related]
20. Thermal performance study of a PV-driven innovative solar dryer with and without sensible heat storage for drying of Garcinia Pedunculata. Dutta P; Dutta PP; Kalita P Environ Sci Pollut Res Int; 2024 Mar; 31(12):18239-18259. PubMed ID: 37186184 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]