These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 38710917)

  • 1. Quintic refractive index profile-based funnel-shaped silicon antireflective structures for enhanced photodetector performance.
    Kim BJ; Jo MS; Yang JS; Chung MK; Kim SH; Yoon JB
    Sci Rep; 2024 May; 14(1):10410. PubMed ID: 38710917
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Antireflective property of thin film a-Si solar cell structures with graded refractive index structure.
    Jang SJ; Song YM; Yeo CI; Park CY; Yu JS; Lee YT
    Opt Express; 2011 Mar; 19 Suppl 2():A108-17. PubMed ID: 21445212
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bioinspired periodic pinecone-shaped Si subwavelength nanostructures for broadband and omnidirectional antireflective surface.
    Leem JW; Yu JS
    J Nanosci Nanotechnol; 2012 Oct; 12(10):7932-8. PubMed ID: 23421159
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Broadband responsivity enhancement of Si photodiodes by a plasmonic antireflection bilayer.
    Park J; Kang IS; Sim G; Kim TH; Lee JK
    Opt Express; 2021 Aug; 29(17):26634-26644. PubMed ID: 34615094
    [TBL] [Abstract][Full Text] [Related]  

  • 5. CuSCN/Si heterojunction near-infrared photodetector based on micro/nano light-trapping structure.
    Liu B; Shen H; Zhang J; Chen D; Mao W
    Nanotechnology; 2023 Mar; 34(23):. PubMed ID: 36857771
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Antireflective properties of porous Si nanocolumnar structures with graded refractive index layers.
    Jang SJ; Song YM; Yu JS; Yeo CI; Lee YT
    Opt Lett; 2011 Jan; 36(2):253-5. PubMed ID: 21263517
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Antireflective hydrophobic si subwavelength structures using thermally dewetted Ni/SiO2 nanomask patterns.
    Joo DH; Leem JW; Yu JS
    J Nanosci Nanotechnol; 2011 Nov; 11(11):10130-5. PubMed ID: 22413355
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Antireflective submicrometer gratings on thin-film silicon solar cells for light-absorption enhancement.
    Song YM; Yu JS; Lee YT
    Opt Lett; 2010 Feb; 35(3):276-8. PubMed ID: 20125693
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Polymer-coated moth-eye hybrid structure for broadband antireflection in the terahertz region.
    Yu X; Goto K; Yasunaga Y; Soeda J; Ono S
    Opt Lett; 2021 Aug; 46(15):3761-3764. PubMed ID: 34329275
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Broadband wide-angle antireflection enhancement in AZO/Si shell/core subwavelength grating structures with hydrophobic surface for Si-based solar cells.
    Leem JW; Song YM; Yu JS
    Opt Express; 2011 Sep; 19 Suppl 5():A1155-64. PubMed ID: 21935259
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Photovoltaic electrical properties of aqueous grown ZnO antireflective nanostructure on Cu(In,Ga)Se₂ thin film solar cells.
    Wang YC; Lin BY; Liu PT; Shieh HP
    Opt Express; 2014 Jan; 22 Suppl 1():A13-20. PubMed ID: 24921989
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Surface antireflection properties of GaN nanostructures with various effective refractive index profiles.
    Han L; Zhao H
    Opt Express; 2014 Dec; 22(26):31907-16. PubMed ID: 25607159
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High Quantum Efficiency and Broadband Photodetector Based on Graphene/Silicon Nanometer Truncated Cone Arrays.
    Zhao J; Liu H; Deng L; Bai M; Xie F; Wen S; Liu W
    Sensors (Basel); 2021 Sep; 21(18):. PubMed ID: 34577354
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multi-functional antireflective surface-relief structures based on nanoscale porous germanium with graded refractive index profiles.
    Leem JW; Yu JS
    Nanoscale; 2013 Mar; 5(6):2520-6. PubMed ID: 23417010
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Indium tin oxide subwavelength nanostructures with surface antireflection and superhydrophilicity for high-efficiency Si-based thin film solar cells.
    Leem JW; Yu JS
    Opt Express; 2012 May; 20(10):A431-40. PubMed ID: 22712092
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Surface Engineering in SnO
    Xu M; Xu Z; Sun Z; Chen W; Wang L; Liu Y; Wang Y; Du X; Pan S
    ACS Appl Mater Interfaces; 2023 Jan; 15(2):3664-3672. PubMed ID: 36598173
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Plasmon-enhanced parabolic nanostructures for broadband absorption in ultra-thin crystalline Si solar cells.
    Pritom YA; Sikder DK; Zaman S; Hossain M
    Nanoscale Adv; 2023 Sep; 5(18):4986-4995. PubMed ID: 37705791
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Light trapping enhancement induced by bimetallic non-alloyed nanoparticles on a disordered subwavelength flexible thin film crystalline silicon substrate using metal-assisted chemical etching.
    Lee SK; Tan CL; Lee YT
    Opt Lett; 2017 Feb; 42(3):431-434. PubMed ID: 28146494
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Flexible-textured polydimethylsiloxane antireflection structure for enhancing omnidirectional photovoltaic performance of Cu(In,Ga)Se2 solar cells.
    Kuo SY; Hsieh MY; Han HV; Lai FI; Chuang TY; Yu P; Lin CC; Kuo HC
    Opt Express; 2014 Feb; 22(3):2860-7. PubMed ID: 24663578
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Flat-top and patterned-topped cone gratings for visible and mid-infrared antireflective properties.
    Brückner JB; Le Rouzo J; Escoubas L; Berginc G; Gourgon C; Desplats O; Simon JJ
    Opt Express; 2013 Jul; 21(13):16043-55. PubMed ID: 23842391
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.