These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
190 related articles for article (PubMed ID: 38711037)
21. Comparative transcriptome among Euscaphis konishii Hayata tissues and analysis of genes involved in flavonoid biosynthesis and accumulation. Liang W; Ni L; Carballar-Lejarazú R; Zou X; Sun W; Wu L; Yuan X; Mao Y; Huang W; Zou S BMC Genomics; 2019 Jan; 20(1):24. PubMed ID: 30626333 [TBL] [Abstract][Full Text] [Related]
22. Characterization of phenylalanine ammonia lyase and revealing flavonoid biosynthesis in Gymnema sylvestre R. Br through transcriptomic approach. Kalariya KA; Mevada RR; Das M J Genet Eng Biotechnol; 2024 Mar; 22(1):100344. PubMed ID: 38494263 [TBL] [Abstract][Full Text] [Related]
23. Transcriptome-Wide Identification and Quantification of Caffeoylquinic Acid Biosynthesis Pathway and Prediction of Its Putative BAHDs Gene Complex in Claude SJ; Park S; Park SJ Int J Mol Sci; 2021 Jun; 22(12):. PubMed ID: 34199260 [TBL] [Abstract][Full Text] [Related]
24. Metabolomics and transcriptomics provide insights into the flavonoid biosynthesis pathway in the roots of developing Aster tataricus. Jia K; Zhang X; Meng Y; Liu S; Liu X; Yang T; Wen C; Liu L; Ge S J Plant Res; 2023 Jan; 136(1):139-156. PubMed ID: 36520245 [TBL] [Abstract][Full Text] [Related]
25. Transcriptomic analysis of key genes involved in chlorogenic acid biosynthetic pathway and characterization of MaHCT from Morus alba L. Zhao L; Wang D; Liu J; Yu X; Wang R; Wei Y; Wen C; Ouyang Z Protein Expr Purif; 2019 Apr; 156():25-35. PubMed ID: 30597215 [TBL] [Abstract][Full Text] [Related]
26. Carbon and nitrogen metabolism under nitrogen variation affects flavonoid accumulation in the leaves of Li Z; Jiang H; Yan H; Jiang X; Ma Y; Qin Y PeerJ; 2021; 9():e12152. PubMed ID: 34595068 [TBL] [Abstract][Full Text] [Related]
27. Combined Metabolome and Transcriptome Analyses Reveal the Effects of Mycorrhizal Fungus Zhang Y; Li Y; Chen X; Meng Z; Guo S Int J Mol Sci; 2020 Jan; 21(2):. PubMed ID: 31952330 [No Abstract] [Full Text] [Related]
28. Integrative transcriptomic and metabolomic analyses reveal the phenylpropanoid and flavonoid biosynthesis of Prunus mume. Wu R; Qian C; Yang Y; Liu Y; Xu L; Zhang W; Ou J J Plant Res; 2024 Jan; 137(1):95-109. PubMed ID: 37938365 [TBL] [Abstract][Full Text] [Related]
29. Transcriptome and metabolite profiling reveals the effects of Funneliformis mosseae on the roots of continuously cropped soybeans. Lu CC; Guo N; Yang C; Sun HB; Cai BY BMC Plant Biol; 2020 Oct; 20(1):479. PubMed ID: 33087042 [TBL] [Abstract][Full Text] [Related]
30. Enzymological mechanism for the regulation of lanthanum chloride on flavonoid synthesis of soybean seedlings under enhanced ultraviolet-B radiation. Fan C; Hu H; Wang L; Zhou Q; Huang X Environ Sci Pollut Res Int; 2014; 21(14):8792-800. PubMed ID: 24710726 [TBL] [Abstract][Full Text] [Related]
31. [Transcriptional regulation mechanism of differential accumulation of flavonoids in different varieties of Lonicera macranthoides based on metabonomics and transcriptomics]. Zhang JY; Long YQ; Zeng J; Fu XS; He JW; Zhou RB; Liu XD Zhongguo Zhong Yao Za Zhi; 2024 May; 49(10):2666-2679. PubMed ID: 38812167 [TBL] [Abstract][Full Text] [Related]
32. Transcriptome Analysis Reveals the Mechanism Underlying the Production of a High Quantity of Chlorogenic Acid in Young Leaves of Lonicera macranthoides Hand.-Mazz. Chen Z; Tang N; You Y; Lan J; Liu Y; Li Z PLoS One; 2015; 10(9):e0137212. PubMed ID: 26381882 [TBL] [Abstract][Full Text] [Related]
33. Integrated metabolome and transcriptome analysis reveals the regulatory mechanism of low nitrogen-driven biosynthesis of saponins and flavonoids in Panax notoginseng. Cun Z; Zhang JY; Hong J; Yang J; Gao LL; Hao B; Chen JW Gene; 2024 Apr; 901():148163. PubMed ID: 38224922 [TBL] [Abstract][Full Text] [Related]
34. Integrated Metabolite and Transcriptome Profiling-Mediated Gene Mining of Padmanabhan D; Natarajan P; Palanisamy S Genes (Basel); 2022 Oct; 13(10):. PubMed ID: 36292794 [No Abstract] [Full Text] [Related]
35. Transcriptome sequencing and flavonoid metabolism analysis in the leaves of three different cultivars of Acer truncatum. Qiao Q; Si F; Wu C; Wang J; Zhang A; Tao J; Zhang L; Liu Y; Feng Z Plant Physiol Biochem; 2022 Jan; 171():1-13. PubMed ID: 34968987 [TBL] [Abstract][Full Text] [Related]
36. Integrative iTRAQ-based proteomic and transcriptomic analysis reveals the accumulation patterns of key metabolites associated with oil quality during seed ripening of Camellia oleifera. Ye Z; Yu J; Yan W; Zhang J; Yang D; Yao G; Liu Z; Wu Y; Hou X Hortic Res; 2021 Jul; 8(1):157. PubMed ID: 34193845 [TBL] [Abstract][Full Text] [Related]
37. Anthocyanin accumulation and expression of anthocyanin biosynthetic genes in radish (Raphanus sativus). Park NI; Xu H; Li X; Jang IH; Park S; Ahn GH; Lim YP; Kim SJ; Park SU J Agric Food Chem; 2011 Jun; 59(11):6034-9. PubMed ID: 21548630 [TBL] [Abstract][Full Text] [Related]
38. The hypoglycemic activity of Lithocarpus polystachyus Rehd. leaves in the experimental hyperglycemic rats. Hou SZ; Chen SX; Huang S; Jiang DX; Zhou CJ; Chen CQ; Liang YM; Lai XP J Ethnopharmacol; 2011 Oct; 138(1):142-9. PubMed ID: 21924344 [TBL] [Abstract][Full Text] [Related]
39. Methyl jasmonate treatment induces changes in fruit ripening by modifying the expression of several ripening genes in Fragaria chiloensis fruit. Concha CM; Figueroa NE; Poblete LA; Oñate FA; Schwab W; Figueroa CR Plant Physiol Biochem; 2013 Sep; 70():433-44. PubMed ID: 23835361 [TBL] [Abstract][Full Text] [Related]
40. Integrated metabolome and transcriptome analyses reveal the role of BoGSTF12 in anthocyanin accumulation in Chinese kale (Brassica oleracea var. alboglabra). Tang K; Karamat U; Li G; Guo J; Jiang S; Fu M; Yang X BMC Plant Biol; 2024 Apr; 24(1):335. PubMed ID: 38664614 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]