BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 38711203)

  • 21. Resistance to Immune Checkpoint Blockade in Uterine Leiomyosarcoma: What Can We Learn from Other Cancer Types?
    De Wispelaere W; Annibali D; Tuyaerts S; Lambrechts D; Amant F
    Cancers (Basel); 2021 Apr; 13(9):. PubMed ID: 33922556
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Activation of the PI3K/mTOR Pathway following PARP Inhibition in Small Cell Lung Cancer.
    Cardnell RJ; Feng Y; Mukherjee S; Diao L; Tong P; Stewart CA; Masrorpour F; Fan Y; Nilsson M; Shen Y; Heymach JV; Wang J; Byers LA
    PLoS One; 2016; 11(4):e0152584. PubMed ID: 27055253
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Remodeling of Stromal Immune Microenvironment by Urolithin A Improves Survival with Immune Checkpoint Blockade in Pancreatic Cancer.
    Mehra S; Garrido VT; Dosch AR; Lamichhane P; Srinivasan S; Singh SP; Zhou Z; De Castro Silva I; Joshi C; Ban Y; Datta J; Gilboa E; Merchant NB; Nagathihalli NS
    Cancer Res Commun; 2023 Jul; 3(7):1224-1236. PubMed ID: 37448553
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Elimusertib (BAY1895344), a novel ATR inhibitor, demonstrates in vivo activity in ATRX mutated models of uterine leiomyosarcoma.
    Harold J; Bellone S; Manavella DD; Mutlu L; McNamara B; Hartwich TMP; Zipponi M; Yang-Hartwich Y; Demirkiran C; Verzosa MS; Choi J; Dong W; Buza N; Hui P; Altwerger G; Huang GS; Andikyan V; Clark M; Ratner E; Azodi M; Schwartz PE; Santin AD
    Gynecol Oncol; 2023 Jan; 168():157-165. PubMed ID: 36442427
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The Effect of LKB1 Activity on the Sensitivity to PI3K/mTOR Inhibition in Non-Small Cell Lung Cancer.
    Shukuya T; Yamada T; Koenig MJ; Xu J; Okimoto T; Li F; Amann JM; Carbone DP
    J Thorac Oncol; 2019 Jun; 14(6):1061-1076. PubMed ID: 30825612
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Cancer immunotherapy with PI3K and PD-1 dual-blockade via optimal modulation of T cell activation signal.
    Isoyama S; Mori S; Sugiyama D; Kojima Y; Tada Y; Shitara K; Hinohara K; Dan S; Nishikawa H
    J Immunother Cancer; 2021 Aug; 9(8):. PubMed ID: 34446575
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Evaluation of the dual mTOR/PI3K inhibitors Gedatolisib (PF-05212384) and PF-04691502 against ovarian cancer xenograft models.
    Langdon SP; Kay C; Um IH; Dodds M; Muir M; Sellar G; Kan J; Gourley C; Harrison DJ
    Sci Rep; 2019 Dec; 9(1):18742. PubMed ID: 31822716
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Systems pharmacology: a combination strategy for improving efficacy of PD-1/PD-L1 blockade.
    Zheng C; Xiao Y; Chen C; Zhu J; Yang R; Yan J; Huang R; Xiao W; Wang Y; Huang C
    Brief Bioinform; 2021 Sep; 22(5):. PubMed ID: 33876189
    [TBL] [Abstract][Full Text] [Related]  

  • 29. BET protein inhibition evidently enhances sensitivity to PI3K/mTOR dual inhibition in intrahepatic cholangiocarcinoma.
    Miao X; Liu C; Jiang Y; Wang Y; Kong D; Wu Z; Wang X; Tian R; Yu X; Zhu X; Gong W
    Cell Death Dis; 2021 Oct; 12(11):1020. PubMed ID: 34716294
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A computational pipeline for identifying gene targets and signalling pathways in cancer cells to improve lymphocyte infiltration and immune checkpoint therapy efficacy.
    Nasr S; Li L; Asad M; Moridi M; Wang M; Zemp FJ; Mahoney DJ; Wang E
    EBioMedicine; 2024 Jun; 104():105167. PubMed ID: 38805852
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Synergistic growth inhibition mediated by dual PI3K/mTOR pathway targeting and genetic or direct pharmacological AKT inhibition in human glioblastoma models.
    von Achenbach C; Weller M; Kaulich K; Gramatzki D; Zacher A; Fabbro D; Reifenberger G; Szabó E
    J Neurochem; 2020 May; 153(4):510-524. PubMed ID: 31618458
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Optimal induction of myeloma cell death requires dual blockade of phosphoinositide 3-kinase and mTOR signalling and is determined by translocation subtype.
    Stengel C; Cheung CW; Quinn J; Yong K; Khwaja A
    Leukemia; 2012 Aug; 26(8):1761-70. PubMed ID: 22415553
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Targeting homologous recombination deficiency in uterine leiomyosarcoma.
    Dall G; Vandenberg CJ; Nesic K; Ratnayake G; Zhu W; Vissers JHA; Bedő J; Penington J; Wakefield MJ; Kee D; Carmagnac A; Lim R; Shield-Artin K; Milesi B; Lobley A; Kyran EL; O'Grady E; Tram J; Zhou W; Nugawela D; Stewart KP; Caldwell R; Papadopoulos L; Ng AP; Dobrovic A; Fox SB; McNally O; Power JD; Meniawy T; Tan TH; Collins IM; Klein O; Barnett S; Olesen I; Hamilton A; Hofmann O; Grimmond S; Papenfuss AT; Scott CL; Barker HE
    J Exp Clin Cancer Res; 2023 May; 42(1):112. PubMed ID: 37143137
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Everolimus (RAD001) combined with programmed death-1 (PD-1) blockade enhances radiosensitivity of cervical cancer and programmed death-ligand 1 (PD-L1) expression by blocking the phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT)/mammalian target of rapamycin (mTOR)/S6 kinase 1 (S6K1) pathway.
    Song L; Liu S; Zhao S
    Bioengineered; 2022 Apr; 13(4):11240-11257. PubMed ID: 35485300
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A risk score combining co-expression modules related to myeloid cells and alternative splicing associates with response to PD-1/PD-L1 blockade in non-small cell lung cancer.
    Han Y; Liu SM; Jin R; Meng W; Wu YL; Li H
    Front Immunol; 2023; 14():1178193. PubMed ID: 37492578
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effect of PI3K- and mTOR-specific inhibitors on spontaneous B-cell follicular lymphomas in PTEN/LKB1-deficient mice.
    García-Martínez JM; Wullschleger S; Preston G; Guichard S; Fleming S; Alessi DR; Duce SL
    Br J Cancer; 2011 Mar; 104(7):1116-25. PubMed ID: 21407213
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Targeting PPAR-gamma counteracts tumour adaptation to immune-checkpoint blockade in hepatocellular carcinoma.
    Xiong Z; Chan SL; Zhou J; Vong JSL; Kwong TT; Zeng X; Wu H; Cao J; Tu Y; Feng Y; Yang W; Wong PP; Si-Tou WW; Liu X; Wang J; Tang W; Liang Z; Lu J; Li KM; Low JT; Chan MW; Leung HHW; Chan AWH; To KF; Yip KY; Lo YMD; Sung JJ; Cheng AS
    Gut; 2023 Sep; 72(9):1758-1773. PubMed ID: 37019619
    [TBL] [Abstract][Full Text] [Related]  

  • 38. MMP14 expression and collagen remodelling support uterine leiomyosarcoma aggressiveness.
    Gonzalez-Molina J; Hahn P; Falcão RM; Gultekin O; Kokaraki G; Zanfagnin V; Braz Petta T; Lehti K; Carlson JW
    Mol Oncol; 2024 Apr; 18(4):850-865. PubMed ID: 37078535
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Targeting SNORA38B attenuates tumorigenesis and sensitizes immune checkpoint blockade in non-small cell lung cancer by remodeling the tumor microenvironment via regulation of GAB2/AKT/mTOR signaling pathway.
    Zhuo Y; Li S; Hu W; Zhang Y; Shi Y; Zhang F; Zhang J; Wang J; Liao M; Chen J; Qian H; Li D; Sun C
    J Immunother Cancer; 2022 May; 10(5):. PubMed ID: 35577506
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Clinical Benefit in Response to Palbociclib Treatment in Refractory Uterine Leiomyosarcomas with a Common
    Elvin JA; Gay LM; Ort R; Shuluk J; Long J; Shelley L; Lee R; Chalmers ZR; Frampton GM; Ali SM; Schrock AB; Miller VA; Stephens PJ; Ross JS; Frank R
    Oncologist; 2017 Apr; 22(4):416-421. PubMed ID: 28283584
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.