These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Current challenges for unseen-epitope TCR interaction prediction and a new perspective derived from image classification. Moris P; De Pauw J; Postovskaya A; Gielis S; De Neuter N; Bittremieux W; Ogunjimi B; Laukens K; Meysman P Brief Bioinform; 2021 Jul; 22(4):. PubMed ID: 33346826 [TBL] [Abstract][Full Text] [Related]
5. TPBTE: A model based on convolutional Transformer for predicting the binding of TCR to epitope. Wu J; Qi M; Zhang F; Zheng Y Mol Immunol; 2023 May; 157():30-41. PubMed ID: 36966551 [TBL] [Abstract][Full Text] [Related]
6. TSpred: a robust prediction framework for TCR-epitope interactions using paired chain TCR sequence data. Kim HY; Kim S; Park WY; Kim D Bioinformatics; 2024 Aug; 40(8):. PubMed ID: 39052940 [TBL] [Abstract][Full Text] [Related]
7. PiTE: TCR-epitope Binding Affinity Prediction Pipeline using Transformer-based Sequence Encoder. Zhang P; Bang S; Lee H Pac Symp Biocomput; 2023; 28():347-358. PubMed ID: 36540990 [TBL] [Abstract][Full Text] [Related]
8. An Attention Based Bidirectional LSTM Method to Predict the Binding of TCR and Epitope. Bi J; Zheng Y; Wang C; Ding Y IEEE/ACM Trans Comput Biol Bioinform; 2022; 19(6):3272-3280. PubMed ID: 34559661 [TBL] [Abstract][Full Text] [Related]
9. Structure-based prediction of T cell receptor recognition of unseen epitopes using TCRen. Karnaukhov VK; Shcherbinin DS; Chugunov AO; Chudakov DM; Efremov RG; Zvyagin IV; Shugay M Nat Comput Sci; 2024 Jul; 4(7):510-521. PubMed ID: 38987378 [TBL] [Abstract][Full Text] [Related]
10. TITAN: T-cell receptor specificity prediction with bimodal attention networks. Weber A; Born J; Rodriguez Martínez M Bioinformatics; 2021 Jul; 37(Suppl_1):i237-i244. PubMed ID: 34252922 [TBL] [Abstract][Full Text] [Related]
11. TCR-H: explainable machine learning prediction of T-cell receptor epitope binding on unseen datasets. T RR; Demerdash ONA; Smith JC Front Immunol; 2024; 15():1426173. PubMed ID: 39221256 [TBL] [Abstract][Full Text] [Related]
12. Determining epitope specificity of T-cell receptors with transformers. Khan AR; Reinders MJT; Khatri I Bioinformatics; 2023 Nov; 39(11):. PubMed ID: 37847663 [TBL] [Abstract][Full Text] [Related]
13. Predicting recognition between T cell receptors and epitopes with TCRGP. Jokinen E; Huuhtanen J; Mustjoki S; Heinonen M; Lähdesmäki H PLoS Comput Biol; 2021 Mar; 17(3):e1008814. PubMed ID: 33764977 [TBL] [Abstract][Full Text] [Related]
14. Predicting TCR-Epitope Binding Specificity Using Deep Metric Learning and Multimodal Learning. Luu AM; Leistico JR; Miller T; Kim S; Song JS Genes (Basel); 2021 Apr; 12(4):. PubMed ID: 33920780 [TBL] [Abstract][Full Text] [Related]
15. TEINet: a deep learning framework for prediction of TCR-epitope binding specificity. Jiang Y; Huo M; Cheng Li S Brief Bioinform; 2023 Mar; 24(2):. PubMed ID: 36907658 [TBL] [Abstract][Full Text] [Related]
16. Quantifiable predictive features define epitope-specific T cell receptor repertoires. Dash P; Fiore-Gartland AJ; Hertz T; Wang GC; Sharma S; Souquette A; Crawford JC; Clemens EB; Nguyen THO; Kedzierska K; La Gruta NL; Bradley P; Thomas PG Nature; 2017 Jul; 547(7661):89-93. PubMed ID: 28636592 [TBL] [Abstract][Full Text] [Related]
17. Predicting T cell receptor functionality against mutant epitopes. Drost F; Dorigatti E; Straub A; Hilgendorf P; Wagner KI; Heyer K; López Montes M; Bischl B; Busch DH; Schober K; Schubert B Cell Genom; 2024 Sep; 4(9):100634. PubMed ID: 39151427 [TBL] [Abstract][Full Text] [Related]
18. ATM-TCR: TCR-Epitope Binding Affinity Prediction Using a Multi-Head Self-Attention Model. Cai M; Bang S; Zhang P; Lee H Front Immunol; 2022; 13():893247. PubMed ID: 35874725 [TBL] [Abstract][Full Text] [Related]
19. EPIC-TRACE: predicting TCR binding to unseen epitopes using attention and contextualized embeddings. Korpela D; Jokinen E; Dumitrescu A; Huuhtanen J; Mustjoki S; Lähdesmäki H Bioinformatics; 2023 Dec; 39(12):. PubMed ID: 38070156 [TBL] [Abstract][Full Text] [Related]
20. TULIP: A transformer-based unsupervised language model for interacting peptides and T cell receptors that generalizes to unseen epitopes. Meynard-Piganeau B; Feinauer C; Weigt M; Walczak AM; Mora T Proc Natl Acad Sci U S A; 2024 Jun; 121(24):e2316401121. PubMed ID: 38838016 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]