These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 38711456)

  • 1. Revealing neural dynamical structure of
    Zhou R; Yu Y; Li C
    iScience; 2024 May; 27(5):109759. PubMed ID: 38711456
    [No Abstract]   [Full Text] [Related]  

  • 2. Role of tyramine in calcium dynamics of GABAergic neurons and escape behavior in
    Kagawa-Nagamura Y; Gengyo-Ando K; Ohkura M; Nakai J
    Zoological Lett; 2018; 4():19. PubMed ID: 30065850
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Neural Network-Based Autonomous Search Model with Undulatory Locomotion Inspired by
    Chen M; Feng D; Su H; Wang M; Su T
    Sensors (Basel); 2022 Nov; 22(22):. PubMed ID: 36433423
    [No Abstract]   [Full Text] [Related]  

  • 4. Modelling learning in Caenorhabditis elegans chemosensory and locomotive circuitry for T-maze navigation.
    Sakelaris BG; Li Z; Sun J; Banerjee S; Booth V; Gourgou E
    Eur J Neurosci; 2022 Jan; 55(2):354-376. PubMed ID: 34894022
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evolution and analysis of minimal neural circuits for klinotaxis in Caenorhabditis elegans.
    Izquierdo EJ; Lockery SR
    J Neurosci; 2010 Sep; 30(39):12908-17. PubMed ID: 20881110
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inferring structural and dynamical properties of gene networks from data with deep learning.
    Chen F; Li C
    NAR Genom Bioinform; 2022 Sep; 4(3):lqac068. PubMed ID: 36110897
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A GNN-based model for capturing spatio-temporal changes in locomotion behaviors of aging C. elegans.
    Yuan Y; Xin K; Liu J; Zhao P; Lu MP; Yan Y; Hu Y; Huo H; Li Z; Fang T
    Comput Biol Med; 2023 Mar; 155():106694. PubMed ID: 36812812
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Memristive Circuit Implementation of Caenorhabditis Elegans Mechanism for Neuromorphic Computing.
    Chen H; Hong Q; Wang Z; Wang C; Zeng X; Zhang J
    IEEE Trans Neural Netw Learn Syst; 2024 Sep; 35(9):12015-12026. PubMed ID: 37028291
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Resolving coiled shapes reveals new reorientation behaviors in C. elegans.
    Broekmans OD; Rodgers JB; Ryu WS; Stephens GJ
    Elife; 2016 Sep; 5():. PubMed ID: 27644113
    [TBL] [Abstract][Full Text] [Related]  

  • 10. From deep learning to mechanistic understanding in neuroscience: the structure of retinal prediction.
    Tanaka H; Nayebi A; Maheswaranathan N; McIntosh L; Baccus SA; Ganguli S
    Adv Neural Inf Process Syst; 2019 Dec; 32():8537-8547. PubMed ID: 35283616
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biological modeling of complex chemotaxis behaviors for C. elegans under speed regulation--a dynamic neural networks approach.
    Xu JX; Deng X
    J Comput Neurosci; 2013 Aug; 35(1):19-37. PubMed ID: 23334866
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Generalizable Machine Learning in Neuroscience Using Graph Neural Networks.
    Wang PY; Sapra S; George VK; Silva GA
    Front Artif Intell; 2021; 4():618372. PubMed ID: 33748747
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Training deep neural density estimators to identify mechanistic models of neural dynamics.
    Gonçalves PJ; Lueckmann JM; Deistler M; Nonnenmacher M; Öcal K; Bassetto G; Chintaluri C; Podlaski WF; Haddad SA; Vogels TP; Greenberg DS; Macke JH
    Elife; 2020 Sep; 9():. PubMed ID: 32940606
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of equation of motion deciphering locomotion including omega turns of
    Chung T; Chang I; Kim S
    Elife; 2024 Apr; 12():. PubMed ID: 38682888
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modeling of dynamical systems through deep learning.
    Rajendra P; Brahmajirao V
    Biophys Rev; 2020 Nov; 12(6):1311-20. PubMed ID: 33222032
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Learning spiking neuronal networks with artificial neural networks: neural oscillations.
    Zhang R; Wang Z; Wu T; Cai Y; Tao L; Xiao ZC; Li Y
    J Math Biol; 2024 Apr; 88(6):65. PubMed ID: 38630136
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Functionality and Robustness of Injured Connectomic Dynamics in C. elegans: Linking Behavioral Deficits to Neural Circuit Damage.
    Kunert JM; Maia PD; Kutz JN
    PLoS Comput Biol; 2017 Jan; 13(1):e1005261. PubMed ID: 28056097
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modeling the thermotaxis behavior of C.elegans based on the artificial neural network.
    Li M; Deng X; Wang J; Chen Q; Tang Y
    Bioengineered; 2016 Jul; 7(4):253-60. PubMed ID: 27286293
    [TBL] [Abstract][Full Text] [Related]  

  • 19.
    Roberts WM; Augustine SB; Lawton KJ; Lindsay TH; Thiele TR; Izquierdo EJ; Faumont S; Lindsay RA; Britton MC; Pokala N; Bargmann CI; Lockery SR
    Elife; 2016 Jan; 5():. PubMed ID: 26824391
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fast deep neural correspondence for tracking and identifying neurons in
    Yu X; Creamer MS; Randi F; Sharma AK; Linderman SW; Leifer AM
    Elife; 2021 Jul; 10():. PubMed ID: 34259623
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.