These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 38712076)

  • 1. Blind source separation of event-related potentials using a recurrent neural network.
    O'Reilly JA; Sunthornwiriya-Amon H; Aparprasith N; Kittichalao P; Chairojwong P; Klai-On T; Lannon EW
    bioRxiv; 2024 Apr; ():. PubMed ID: 38712076
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Localized estimation of event-related neural source activity from simultaneous MEG-EEG with a recurrent neural network.
    O'Reilly JA; Zhu JD; Sowman PF
    Neural Netw; 2024 Sep; 180():106731. PubMed ID: 39303603
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Guided Tutorial on Modelling Human Event-Related Potentials with Recurrent Neural Networks.
    O'Reilly JA; Wehrman J; Sowman PF
    Sensors (Basel); 2022 Nov; 22(23):. PubMed ID: 36501944
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Recurrent Neural Network Model of Human Event-related Potentials in Response to Intensity Oddball Stimulation.
    O'Reilly JA
    Neuroscience; 2022 Nov; 504():63-74. PubMed ID: 36228828
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Neural correlates of face perception modeled with a convolutional recurrent neural network.
    O'Reilly JA; Wehrman J; Carey A; Bedwin J; Hourn T; Asadi F; Sowman PF
    J Neural Eng; 2023 Apr; 20(2):. PubMed ID: 36898147
    [No Abstract]   [Full Text] [Related]  

  • 6. Localized estimation of electromagnetic sources underlying event-related fields using recurrent neural networks.
    O'Reilly JA; Zhu JD; Sowman PF
    J Neural Eng; 2023 Aug; 20(4):. PubMed ID: 37567215
    [No Abstract]   [Full Text] [Related]  

  • 7. Analysis and visualization of single-trial event-related potentials.
    Jung TP; Makeig S; Westerfield M; Townsend J; Courchesne E; Sejnowski TJ
    Hum Brain Mapp; 2001 Nov; 14(3):166-85. PubMed ID: 11559961
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modelling mouse auditory response dynamics along a continuum of consciousness using a deep recurrent neural network.
    O'Reilly JA
    J Neural Eng; 2022 Sep; 19(5):. PubMed ID: 36108616
    [No Abstract]   [Full Text] [Related]  

  • 9. ICA-derived cortical responses indexing rapid multi-feature auditory processing in six-month-old infants.
    Piazza C; Cantiani C; Akalin-Acar Z; Miyakoshi M; Benasich AA; Reni G; Bianchi AM; Makeig S
    Neuroimage; 2016 Jun; 133():75-87. PubMed ID: 26944858
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Decomposition of working memory-related scalp ERPs: crossvalidation of fMRI-constrained source analysis and ICA.
    Wibral M; Turi G; Linden DE; Kaiser J; Bledowski C
    Int J Psychophysiol; 2008 Mar; 67(3):200-11. PubMed ID: 17692981
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Neural component analysis: A spatial filter for electroencephalogram analysis.
    Daly I
    J Neurosci Methods; 2021 Jan; 348():108987. PubMed ID: 33157145
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Validation of the Emotiv EPOC(®) EEG gaming system for measuring research quality auditory ERPs.
    Badcock NA; Mousikou P; Mahajan Y; de Lissa P; Thie J; McArthur G
    PeerJ; 2013; 1():e38. PubMed ID: 23638374
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Principle ERP reduction and analysis: Estimating and using principle ERP waveforms underlying ERPs across tasks, subjects and electrodes.
    Campos E; Hazlett C; Tan P; Truong H; Loo S; DiStefano C; Jeste S; Şentürk D
    Neuroimage; 2020 May; 212():116630. PubMed ID: 32087372
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An artificial neural network approach to ERP classification.
    Gupta L; Molfese DL; Tammana R
    Brain Cogn; 1995 Apr; 27(3):311-30. PubMed ID: 7626279
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Comparative Study of Different EEG Reference Choices for Event-Related Potentials Extracted by Independent Component Analysis.
    Dong L; Liu X; Zhao L; Lai Y; Gong D; Liu T; Yao D
    Front Neurosci; 2019; 13():1068. PubMed ID: 31680810
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An EEG Classification-Based Method for Single-Trial N170 Latency Detection and Estimation.
    Zang S; Ding X; Wu M; Zhou C
    Comput Math Methods Med; 2022; 2022():6331956. PubMed ID: 35222689
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synthetic event-related potentials: a computational bridge between neurolinguistic models and experiments.
    Barrès V; Simons A; Arbib M
    Neural Netw; 2013 Jan; 37():66-92. PubMed ID: 23177656
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Principal components analysis of Laplacian waveforms as a generic method for identifying ERP generator patterns: I. Evaluation with auditory oddball tasks.
    Kayser J; Tenke CE
    Clin Neurophysiol; 2006 Feb; 117(2):348-68. PubMed ID: 16356767
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The spatio-temporal dynamics of deviance and target detection in the passive and active auditory oddball paradigm: a sLORETA study.
    Justen C; Herbert C
    BMC Neurosci; 2018 Apr; 19(1):25. PubMed ID: 29673322
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Source-space ICA for EEG source separation, localization, and time-course reconstruction.
    Jonmohamadi Y; Poudel G; Innes C; Jones R
    Neuroimage; 2014 Nov; 101():720-37. PubMed ID: 25108125
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.