These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 38712184)

  • 1. SAMP: Identifying Antimicrobial Peptides by an Ensemble Learning Model Based on Proportionalized Split Amino Acid Composition.
    Feng J; Sun M; Liu C; Zhang W; Xu C; Wang J; Wang G; Wan S
    bioRxiv; 2024 Apr; ():. PubMed ID: 38712184
    [TBL] [Abstract][Full Text] [Related]  

  • 2. sAMP-VGG16: Force-field assisted image-based deep neural network prediction model for short antimicrobial peptides.
    Pandey P; Srivastava A
    Proteins; 2024 Mar; ():. PubMed ID: 38520179
    [TBL] [Abstract][Full Text] [Related]  

  • 3. iAMPCN: a deep-learning approach for identifying antimicrobial peptides and their functional activities.
    Xu J; Li F; Li C; Guo X; Landersdorfer C; Shen HH; Peleg AY; Li J; Imoto S; Yao J; Akutsu T; Song J
    Brief Bioinform; 2023 Jul; 24(4):. PubMed ID: 37369638
    [TBL] [Abstract][Full Text] [Related]  

  • 4. AMPFinder: A computational model to identify antimicrobial peptides and their functions based on sequence-derived information.
    Yang S; Yang Z; Ni X
    Anal Biochem; 2023 Jul; 673():115196. PubMed ID: 37236434
    [TBL] [Abstract][Full Text] [Related]  

  • 5. sAMP-PFPDeep: Improving accuracy of short antimicrobial peptides prediction using three different sequence encodings and deep neural networks.
    Hussain W
    Brief Bioinform; 2022 Jan; 23(1):. PubMed ID: 34849586
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ensemble-AMPPred: Robust AMP Prediction and Recognition Using the Ensemble Learning Method with a New Hybrid Feature for Differentiating AMPs.
    Lertampaiporn S; Vorapreeda T; Hongsthong A; Thammarongtham C
    Genes (Basel); 2021 Jan; 12(2):. PubMed ID: 33494403
    [TBL] [Abstract][Full Text] [Related]  

  • 7. ECAmyloid: An amyloid predictor based on ensemble learning and comprehensive sequence-derived features.
    Yang R; Liu J; Zhang L
    Comput Biol Chem; 2023 Jun; 104():107853. PubMed ID: 36990028
    [TBL] [Abstract][Full Text] [Related]  

  • 8. AMPpred-EL: An effective antimicrobial peptide prediction model based on ensemble learning.
    Lv H; Yan K; Guo Y; Zou Q; Hesham AE; Liu B
    Comput Biol Med; 2022 Jul; 146():105577. PubMed ID: 35576825
    [TBL] [Abstract][Full Text] [Related]  

  • 9. AMP-BERT: Prediction of antimicrobial peptide function based on a BERT model.
    Lee H; Lee S; Lee I; Nam H
    Protein Sci; 2023 Jan; 32(1):e4529. PubMed ID: 36461699
    [TBL] [Abstract][Full Text] [Related]  

  • 10. EnAMP: A novel deep learning ensemble antibacterial peptide recognition algorithm based on multi-features.
    Zhuang J; Gao W; Su R
    J Bioinform Comput Biol; 2024 Feb; 22(1):2450001. PubMed ID: 38406833
    [TBL] [Abstract][Full Text] [Related]  

  • 11. ACEP: improving antimicrobial peptides recognition through automatic feature fusion and amino acid embedding.
    Fu H; Cao Z; Li M; Wang S
    BMC Genomics; 2020 Aug; 21(1):597. PubMed ID: 32859150
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Deep learning improves antimicrobial peptide recognition.
    Veltri D; Kamath U; Shehu A
    Bioinformatics; 2018 Aug; 34(16):2740-2747. PubMed ID: 29590297
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Integrating transformer and imbalanced multi-label learning to identify antimicrobial peptides and their functional activities.
    Pang Y; Yao L; Xu J; Wang Z; Lee TY
    Bioinformatics; 2022 Dec; 38(24):5368-5374. PubMed ID: 36326438
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Co-AMPpred for in silico-aided predictions of antimicrobial peptides by integrating composition-based features.
    Singh O; Hsu WL; Su EC
    BMC Bioinformatics; 2021 Jul; 22(1):389. PubMed ID: 34330209
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Using an Ensemble to Identify and Classify Macroalgae Antimicrobial Peptides.
    Caprani MC; Healy J; Slattery O; O'Keeffe J
    Interdiscip Sci; 2021 Jun; 13(2):321-333. PubMed ID: 33978916
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Proteomic Screening for Prediction and Design of Antimicrobial Peptides with AmpGram.
    Burdukiewicz M; Sidorczuk K; Rafacz D; Pietluch F; Chilimoniuk J; Rödiger S; Gagat P
    Int J Mol Sci; 2020 Jun; 21(12):. PubMed ID: 32560350
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of N-terminal modifications on the stability of antimicrobial peptide SAMP-A4 analogues against protease degradation.
    Li R; He S; Yin K; Zhang B; Yi Y; Zhang M; Pei N; Huang L
    J Pept Sci; 2021 Oct; 27(10):e3352. PubMed ID: 34028137
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identifying anti-coronavirus peptides by incorporating different negative datasets and imbalanced learning strategies.
    Pang Y; Wang Z; Jhong JH; Lee TY
    Brief Bioinform; 2021 Mar; 22(2):1085-1095. PubMed ID: 33497434
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Combining genetic algorithm with machine learning strategies for designing potent antimicrobial peptides.
    Boone K; Wisdom C; Camarda K; Spencer P; Tamerler C
    BMC Bioinformatics; 2021 May; 22(1):239. PubMed ID: 33975547
    [TBL] [Abstract][Full Text] [Related]  

  • 20. PIP-EL: A New Ensemble Learning Method for Improved Proinflammatory Peptide Predictions.
    Manavalan B; Shin TH; Kim MO; Lee G
    Front Immunol; 2018; 9():1783. PubMed ID: 30108593
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.