These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 38712226)

  • 1. Sensorimotor delays constrain robust locomotion in a 3D kinematic model of fly walking.
    Karashchuk L; Li JSL; Chou GM; Walling-Bell S; Brunton SL; Tuthill JC; Brunton BW
    bioRxiv; 2024 Apr; ():. PubMed ID: 38712226
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Kinematic trajectories in response to speed perturbations in walking suggest modular task-level control of leg angle and length.
    Schwaner MJ; Nishikawa KC; Daley MA
    Integr Comp Biol; 2022 May; ():. PubMed ID: 35612979
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A leg model based on anatomical landmarks to study 3D joint kinematics of walking in
    Haustein M; Blanke A; Bockemühl T; Büschges A
    Front Bioeng Biotechnol; 2024; 12():1357598. PubMed ID: 38988867
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Robust walking control of a lower limb rehabilitation exoskeleton coupled with a musculoskeletal model via deep reinforcement learning.
    Luo S; Androwis G; Adamovich S; Nunez E; Su H; Zhou X
    J Neuroeng Rehabil; 2023 Mar; 20(1):34. PubMed ID: 36935514
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A neuromuscular model of human locomotion combines spinal reflex circuits with voluntary movements.
    Ramadan R; Geyer H; Jeka J; Schöner G; Reimann H
    Sci Rep; 2022 May; 12(1):8189. PubMed ID: 35581211
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A controller for walking derived from how humans recover from perturbations.
    Joshi V; Srinivasan M
    J R Soc Interface; 2019 Aug; 16(157):20190027. PubMed ID: 31409232
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Kinematic primitives for walking and trotting gaits of a quadruped robot with compliant legs.
    Spröwitz AT; Ajallooeian M; Tuleu A; Ijspeert AJ
    Front Comput Neurosci; 2014; 8():27. PubMed ID: 24639645
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Repeatability of 3D gait kinematics obtained from an electromagnetic tracking system during treadmill locomotion.
    Mills PM; Morrison S; Lloyd DG; Barrett RS
    J Biomech; 2007; 40(7):1504-11. PubMed ID: 16919639
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Review of balance recovery in response to external perturbations during daily activities.
    Tokur D; Grimmer M; Seyfarth A
    Hum Mov Sci; 2020 Feb; 69():102546. PubMed ID: 31989948
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Adapting Footfall Rhythmicity to Auditory Perturbations Affects Resilience of Locomotor Behavior: A Proof-of-Concept Study.
    Ravi DK; Heimhofer CC; Taylor WR; Singh NB
    Front Neurosci; 2021; 15():678965. PubMed ID: 34393705
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Fuzzy Controller for Movement Stabilization Using Afferent Control: Controller Synthesis and Simulation.
    Khodadadi Z; Kobravi HR; Majd MF
    J Med Signals Sens; 2017; 7(4):239-246. PubMed ID: 29204381
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Improvements in skilled walking associated with kinematic adaptations in people with spinal cord injury.
    Malik RN; Eginyan G; Lynn AK; Lam T
    J Neuroeng Rehabil; 2019 Aug; 16(1):107. PubMed ID: 31455357
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Linking neural circuits to the mechanics of animal behavior in
    Kohsaka H
    Front Neural Circuits; 2023; 17():1175899. PubMed ID: 37711343
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Aging effects on leg joint variability during walking with balance perturbations.
    Qiao M; Feld JA; Franz JR
    Gait Posture; 2018 May; 62():27-33. PubMed ID: 29510323
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Part 2: Adaptation of Gait Kinematics in Unilateral Cerebral Palsy Demonstrates Preserved Independent Neural Control of Each Limb.
    Bulea TC; Stanley CJ; Damiano DL
    Front Hum Neurosci; 2017; 11():50. PubMed ID: 28243195
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A model-based exploration of the role of pattern generating circuits during locomotor adaptation.
    Marjaninejad A; Finley JM
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():21-24. PubMed ID: 28268271
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sensorimotor transformation underlying odor-modulated locomotion in walking Drosophila.
    Tao L; Wechsler SP; Bhandawat V
    Nat Commun; 2023 Oct; 14(1):6818. PubMed ID: 37884581
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hybrid Parallel Compliance Allows Robots to Operate With Sensorimotor Delays and Low Control Frequencies.
    Ashtiani MS; Aghamaleki Sarvestani A; Badri-Spröwitz A
    Front Robot AI; 2021; 8():645748. PubMed ID: 34312595
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inter-leg coordination in the control of walking speed in Drosophila.
    Wosnitza A; Bockemühl T; Dübbert M; Scholz H; Büschges A
    J Exp Biol; 2013 Feb; 216(Pt 3):480-91. PubMed ID: 23038731
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Artificial neural network model for the generation of muscle activation patterns for human locomotion.
    Prentice SD; Patla AE; Stacey DA
    J Electromyogr Kinesiol; 2001 Feb; 11(1):19-30. PubMed ID: 11166605
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.