These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
113 related articles for article (PubMed ID: 38712481)
1. Effect of Sample Geometry on Graphitization of Polyacrylonitrile. Hwang YW; Shin TJ; Seo JH; Kim MH; Lee WJ; Ruoff RS; Seong WK; Lee SH Small; 2024 Sep; 20(36):e2400301. PubMed ID: 38712481 [TBL] [Abstract][Full Text] [Related]
2. Laser induced graphitization of PAN-based carbon fibers. Sha Y; Yang W; Li S; Yao L; Li H; Cheng L; Yan H; Cao W; Tan J RSC Adv; 2018 Mar; 8(21):11543-11550. PubMed ID: 35542777 [TBL] [Abstract][Full Text] [Related]
3. Recent advances in the use of graphene-family nanoadsorbents for removal of toxic pollutants from wastewater. Chowdhury S; Balasubramanian R Adv Colloid Interface Sci; 2014 Feb; 204():35-56. PubMed ID: 24412086 [TBL] [Abstract][Full Text] [Related]
4. Preparation and characterization of silica nanoparticulate-polyacrylonitrile composite and porous nanofibers. Ji L; Saquing C; Khan SA; Zhang X Nanotechnology; 2008 Feb; 19(8):085605. PubMed ID: 21730729 [TBL] [Abstract][Full Text] [Related]
5. High-temperature tensile cell for in situ real-time investigation of carbon fibre carbonization and graphitization processes. Behr M; Rix J; Landes B; Barton B; Billovits G; Hukkanen E; Patton J; Wang W; Keane D; Weigand S J Synchrotron Radiat; 2016 Nov; 23(Pt 6):1379-1389. PubMed ID: 27787243 [TBL] [Abstract][Full Text] [Related]
6. Pd-Ni alloy nanoparticle/carbon nanofiber composites: preparation, structure, and superior electrocatalytic properties for sugar analysis. Guo Q; Liu D; Zhang X; Li L; Hou H; Niwa O; You T Anal Chem; 2014 Jun; 86(12):5898-905. PubMed ID: 24837693 [TBL] [Abstract][Full Text] [Related]
8. Surface modified of polyacrylonitrile nanofibers by TiO Khalil A; Nasser WS; Osman TA; Toprak MS; Muhammed M; Uheida A Environ Res; 2019 Dec; 179(Pt A):108788. PubMed ID: 31590001 [TBL] [Abstract][Full Text] [Related]
9. Thermal, Electrical and Surface Hydrophobic Properties of Electrospun Polyacrylonitrile Nanofibers for Structural Health Monitoring. Alarifi IM; Alharbi A; Khan WS; Swindle A; Asmatulu R Materials (Basel); 2015 Oct; 8(10):7017-7031. PubMed ID: 28793615 [TBL] [Abstract][Full Text] [Related]
10. In-situ compatibilized starch/polyacylonitrile composite fiber fabricated via dry-wet spinning technique. Wang F; Chang L; Wang L; Gong Y; Guo Y; Shi Q; Quan F Int J Biol Macromol; 2022 Jul; 212():412-419. PubMed ID: 35577192 [TBL] [Abstract][Full Text] [Related]
11. Oxidative stabilization of polyacrylonitrile nanofibers and carbon nanofibers containing graphene oxide (GO): a spectroscopic and electrochemical study. Gergin İ; Ismar E; Sarac AS Beilstein J Nanotechnol; 2017; 8():1616-1628. PubMed ID: 28875098 [TBL] [Abstract][Full Text] [Related]
12. Understanding the graphitization and growth of free-standing nanocrystalline graphene using in situ transmission electron microscopy. Shyam Kumar CN; Chakravadhanula VSK; Riaz A; Dehm S; Wang D; Mu X; Flavel B; Krupke R; Kübel C Nanoscale; 2017 Sep; 9(35):12835-12842. PubMed ID: 28799608 [TBL] [Abstract][Full Text] [Related]
13. Preparation, Stabilization and Carbonization of a Novel Polyacrylonitrile-Based Carbon Fiber Precursor. Liu H; Zhang S; Yang J; Ji M; Yu J; Wang M; Chai X; Yang B; Zhu C; Xu J Polymers (Basel); 2019 Jul; 11(7):. PubMed ID: 31277462 [TBL] [Abstract][Full Text] [Related]
14. Unraveling the Catalytic Graphitization Mechanism of Ni-P Electroless Plated Cokes via In Situ Analytical Approaches. Choi GB; Ahn JR; Kim J; Seo TH; Lee SW ACS Omega; 2024 Feb; 9(6):6741-6748. PubMed ID: 38371758 [TBL] [Abstract][Full Text] [Related]
15. Changes and Migration of Coal-Derived Minerals on the Graphitization Process of Anthracite. Wang L; Qiu T; Guo Z; Shen X; Yang J; Wang Y ACS Omega; 2021 Jan; 6(1):180-187. PubMed ID: 33458470 [TBL] [Abstract][Full Text] [Related]
16. Polyacrylonitrile/polypyrrole core/shell nanofiber mat for the removal of hexavalent chromium from aqueous solution. Wang J; Pan K; He Q; Cao B J Hazard Mater; 2013 Jan; 244-245():121-9. PubMed ID: 23246947 [TBL] [Abstract][Full Text] [Related]
17. Highly porous multiwalled carbon nanotube buckypaper using electrospun polyacrylonitrile nanofiber as a sacrificial material. Rojas JA; Ardila-Rodríguez LA; Diniz MF; Gonçalves M; Ribeiro B; Rezende MC Heliyon; 2019 Mar; 5(3):e01386. PubMed ID: 30963122 [TBL] [Abstract][Full Text] [Related]
18. Degradation of methyl orange on Fe/Ag nanoparticles immobilized on polyacrylonitrile nanofibers using EDTA chelating agents. Chaúque EFC; Ngila JC; Ray SC; Ndlwana L J Environ Manage; 2019 Apr; 236():481-489. PubMed ID: 30771668 [TBL] [Abstract][Full Text] [Related]
19. Control of physical properties of carbon nanofibers obtained from coaxial electrospinning of PMMA and PAN with adjustable inner/outer nozzle-ends. Kaerkitcha N; Chuangchote S; Sagawa T Nanoscale Res Lett; 2016 Dec; 11(1):186. PubMed ID: 27067734 [TBL] [Abstract][Full Text] [Related]
20. Green Fabrication of Ag Coated Polyacrylonitrile Nanofibrous Composite Membrane with High Catalytic Efficiency. Shen L; Yu L; Wang M; Wang X; Zhu M; Hsiao BS J Nanosci Nanotechnol; 2015 Jul; 15(7):5004-12. PubMed ID: 26373068 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]