These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 38712896)

  • 21. Testosterone and 11-ketotestosterone have different regulatory effects on electric communication signals of male Brachyhypopomus gauderio.
    Goldina A; Gavassa S; Stoddard PK
    Horm Behav; 2011 Jul; 60(2):139-47. PubMed ID: 21596047
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Beyond the Jamming Avoidance Response: weakly electric fish respond to the envelope of social electrosensory signals.
    Stamper SA; Madhav MS; Cowan NJ; Fortune ES
    J Exp Biol; 2012 Dec; 215(Pt 23):4196-207. PubMed ID: 23136154
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effects of hypoxia on aerobic metabolism and active electrosensory acquisition in the African weakly electric fish Marcusenius victoriae.
    Moulton TL; Chapman LJ; Krahe R
    J Fish Biol; 2020 Feb; 96(2):496-505. PubMed ID: 31845335
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Detection of multiple stimulus features forces a trade-off in the pyramidal cell network of a gymnotiform electric fish's electrosensory lateral line lobe.
    Stoddard PK
    J Comp Physiol A; 1998 Jan; 182(1):103-13. PubMed ID: 9447717
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Neural correlates of novelty detection in pulse-type weakly electric fish.
    Grau HJ; Bastian J
    J Comp Physiol A; 1986 Aug; 159(2):191-200. PubMed ID: 3761224
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Co-adaptation of electric organ discharges and chirps in South American ghost knifefishes (Apteronotidae).
    Petzold JM; Marsat G; Smith GT
    J Physiol Paris; 2016 Oct; 110(3 Pt B):200-215. PubMed ID: 27989653
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Convergent mosaic brain evolution is associated with the evolution of novel electrosensory systems in teleost fishes.
    Schumacher EL; Carlson BA
    Elife; 2022 Jun; 11():. PubMed ID: 35713403
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Logarithmic time course of sensory adaptation in electrosensory afferent nerve fibers in a weakly electric fish.
    Xu Z; Payne JR; Nelson ME
    J Neurophysiol; 1996 Sep; 76(3):2020-32. PubMed ID: 8890311
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Electric organ discharges of the gymnotiform fishes: III. Brachyhypopomus.
    Stoddard PK; Rasnow B; Assad C
    J Comp Physiol A; 1999 Jun; 184(6):609-30. PubMed ID: 10418155
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The role of the electrosensory system in postural control of the weakly electric fish Eigenmannia virescens.
    Feng AS
    J Neurobiol; 1977 Sep; 8(5):429-37. PubMed ID: 903765
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Sensory cues for the gradual frequency fall responses of the gymnotiform electric fish, Rhamphichthys rostratus.
    Kawasaki M; Prather J; Guo YX
    J Comp Physiol A; 1996 Apr; 178(4):453-62. PubMed ID: 8847661
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The complexity of high-frequency electric fields degrades electrosensory inputs: implications for the jamming avoidance response in weakly electric fish.
    Shifman AR; Lewis JE
    J R Soc Interface; 2018 Jan; 15(138):. PubMed ID: 29367237
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Sensitivity to novel feedback at different phases of a gymnotid electric organ discharge.
    Schuster S; Otto N
    J Exp Biol; 2002 Nov; 205(Pt 21):3307-20. PubMed ID: 12324540
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Intraspecific variability of the pulse-type discharges of the African electric fishes, Pollimyrus isidori and Petrocephalus bovei (Mormyridae, Teleostei), and their dependence on water conductivity.
    Bratton BO; Kramer B
    Exp Biol; 1988; 47(4):227-38. PubMed ID: 3220124
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Energetics of Sensing and Communication in Electric Fish: A Blessing and a Curse in the Anthropocene?
    Markham MR; Ban Y; McCauley AG; Maltby R
    Integr Comp Biol; 2016 Nov; 56(5):889-900. PubMed ID: 27549201
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Representation of accurate temporal information in the electrosensory system of the African electric fish, Gymnarchus niloticus.
    Guo YX; Kawasaki M
    J Neurosci; 1997 Mar; 17(5):1761-8. PubMed ID: 9030634
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A sodium-activated potassium channel supports high-frequency firing and reduces energetic costs during rapid modulations of action potential amplitude.
    Markham MR; Kaczmarek LK; Zakon HH
    J Neurophysiol; 2013 Apr; 109(7):1713-23. PubMed ID: 23324315
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Electric organ discharges and near-field spatiotemporal patterns of the electromotive force in a sympatric assemblage of Neotropical electric knifefish.
    Waddell JC; Rodríguez-Cattáneo A; Caputi AA; Crampton WGR
    J Physiol Paris; 2016 Oct; 110(3 Pt B):164-181. PubMed ID: 27794446
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A model for studying the energetics of sustained high frequency firing.
    Joos B; Markham MR; Lewis JE; Morris CE
    PLoS One; 2018; 13(4):e0196508. PubMed ID: 29708986
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Plasticity of feedback inputs in the apteronotid electrosensory system.
    Bastian J
    J Exp Biol; 1999 May; 202(Pt 10):1327-37. PubMed ID: 10210673
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.