These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 38712896)

  • 61. Local vasotocin modulation of the pacemaker nucleus resembles distinct electric behaviors in two species of weakly electric fish.
    Perrone R; Migliaro A; Comas V; Quintana L; Borde M; Silva A
    J Physiol Paris; 2014; 108(2-3):203-12. PubMed ID: 25125289
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Ontogeny and evolution of electric organs in gymnotiform fish.
    Kirschbaum F; Schwassmann HO
    J Physiol Paris; 2008; 102(4-6):347-56. PubMed ID: 18984049
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Patterns of electric organ discharge activity in the weakly electric fish Brienomyrus niger L. (Mormyridae).
    Serrier J; Moller P
    Exp Biol; 1989; 48(5):235-44. PubMed ID: 2620705
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Effect of conductivity changes on the stability of electric signal waveforms in dwarf stonebashers (Mormyridae; Pollimyrus castelnaui, P. marianne).
    Baier B
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2008 Oct; 194(10):915-9. PubMed ID: 18726600
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Stimulus discrimination in the diencephalon of Eigenmannia: the emergence and sharpening of a sensory filter.
    Keller CH
    J Comp Physiol A; 1988 Apr; 162(6):747-57. PubMed ID: 3397918
    [TBL] [Abstract][Full Text] [Related]  

  • 66. The electric organ discharge of Brachyhypopomus pinnicaudatus. The effects of environmental variables on waveform generation.
    Caputi AA; Silva AC; Macadar O
    Brain Behav Evol; 1998; 52(3):148-58. PubMed ID: 9693161
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Weakly electric fish learn both visual and electrosensory cues in a multisensory object discrimination task.
    Dangelmayer S; Benda J; Grewe J
    J Physiol Paris; 2016 Oct; 110(3 Pt B):182-189. PubMed ID: 27825970
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Influence of temperature and reproductive state upon the jamming avoidance response in the pulse-type electric fish Brachyhypopomus pinnicaudatus.
    Lorenzo D; Macadar O
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2005 Jan; 191(1):85-94. PubMed ID: 15688242
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Electrocyte physiology: 50 years later.
    Markham MR
    J Exp Biol; 2013 Jul; 216(Pt 13):2451-8. PubMed ID: 23761470
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Behavioral actions of androgens and androgen receptor expression in the electrocommunication system of an electric fish, Eigenmannia virescens.
    Dunlap KD; Zakon HH
    Horm Behav; 1998 Aug; 34(1):30-8. PubMed ID: 9735226
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Electroreception in G carapo: detection of changes in waveform of the electrosensory signals.
    Aguilera PA; Caputi AA
    J Exp Biol; 2003 Mar; 206(Pt 6):989-98. PubMed ID: 12582141
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Global electrosensory oscillations enhance directional responses of midbrain neurons in eigenmannia.
    Ramcharitar JU; Tan EW; Fortune ES
    J Neurophysiol; 2006 Nov; 96(5):2319-26. PubMed ID: 16790600
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Species differences in group size and electrosensory interference in weakly electric fishes: implications for electrosensory processing.
    Stamper SA; Carrera-G E; Tan EW; Fugère V; Krahe R; Fortune ES
    Behav Brain Res; 2010 Mar; 207(2):368-76. PubMed ID: 19874855
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Communication in the weakly electric fish Sternopygus macrurus. I. The neural basis of conspecific EOD detection.
    Fleishman LJ
    J Comp Physiol A; 1992 Mar; 170(3):335-48. PubMed ID: 1593503
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Waveform sensitivity of electroreceptors in the pulse-type weakly electric fish
    Rodríguez-Cattaneo A; Aguilera PA; Caputi AA
    J Exp Biol; 2017 May; 220(Pt 9):1663-1673. PubMed ID: 28202586
    [TBL] [Abstract][Full Text] [Related]  

  • 76. The captivating effect of electric organ discharges: species, sex and orientation are embedded in every single received image.
    Waddell JC; Caputi AA
    J Exp Biol; 2021 Aug; 224(16):. PubMed ID: 34318315
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Sensory processing and corollary discharge effects in the mormyromast regions of the mormyrid electrosensory lobe. I. Field potentials, cellular activity in associated structures.
    Bell CC; Grant K; Serrier J
    J Neurophysiol; 1992 Sep; 68(3):843-58. PubMed ID: 1432052
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Gain control in the electrosensory system: a role for the descending projections to the electrosensory lateral line lobe.
    Bastian J
    J Comp Physiol A; 1986 Apr; 158(4):505-15. PubMed ID: 3014129
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Environmental, seasonal, and social modulations of basal activity in a weakly electric fish.
    Silva A; Perrone R; Macadar O
    Physiol Behav; 2007 Feb; 90(2-3):525-36. PubMed ID: 17178133
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Phase and amplitude maps of the electric organ discharge of the weakly electric fish, Apteronotus leptorhynchus.
    Rasnow B; Assad C; Bower JM
    J Comp Physiol A; 1993 May; 172(4):481-91. PubMed ID: 8315610
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.