These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
113 related articles for article (PubMed ID: 38712975)
1. Micelle-based fluorogenic sensing of trypsin: a sensitive method in pancreatic disease diagnosis. Song H; Choi H; Kim YS; Lee SH Org Biomol Chem; 2024 May; 22(21):4243-4248. PubMed ID: 38712975 [TBL] [Abstract][Full Text] [Related]
2. Ultrasensitive Determination of Trypsin in Human Urine Based on Amplified Fluorescence Response. Park T; Han M; Schanze KS; Lee SH ACS Sens; 2023 Jul; 8(7):2591-2597. PubMed ID: 37235879 [TBL] [Abstract][Full Text] [Related]
3. A simple fluorescent probe based on a pyrene derivative for rapid detection of protamine and monitoring of trypsin activity. Tang B; Yang Y; Wang G; Yao Z; Zhang L; Wu HC Org Biomol Chem; 2015 Aug; 13(32):8708-12. PubMed ID: 26178260 [TBL] [Abstract][Full Text] [Related]
5. Self-assembled super-small AIEgen nanoprobe for highly sensitive and selective detection of protamine and trypsin. Zhang L; Huang J; Chen M; Huang H; Xiao Y; Yang R; Zhang Y; He X; Wang K Anal Methods; 2023 Jul; 15(29):3586-3591. PubMed ID: 37463001 [TBL] [Abstract][Full Text] [Related]
6. Fluorogenic Monitoring of α-Amylase in Human Urine for Straightforward Diagnosis of Pancreatic Diseases. Choi H; Kim S; Park T; Lee SH Chem Asian J; 2024 Oct; 19(19):e202400505. PubMed ID: 38959126 [TBL] [Abstract][Full Text] [Related]
7. Highly sensitive fluorescent detection of trypsin based on BSA-stabilized gold nanoclusters. Hu L; Han S; Parveen S; Yuan Y; Zhang L; Xu G Biosens Bioelectron; 2012 Feb; 32(1):297-9. PubMed ID: 22209331 [TBL] [Abstract][Full Text] [Related]
8. A pyrene-based fluorescent sensor for ratiometric detection of heparin and its complex with heparin for reversed ratiometric detection of protamine in aqueous solution. Gong W; Wang S; Wei Y; Ding L; Fang Y Spectrochim Acta A Mol Biomol Spectrosc; 2017 Jan; 170():198-205. PubMed ID: 27450118 [TBL] [Abstract][Full Text] [Related]
9. A ratiometric fluorescence strategy based on polyethyleneimine surface-modified carbon dots and Eosin Y for the ultrasensitive determination of protamine and trypsin. Sun W; Zhang F; Wang M; Wang N; Wang G; Su X Analyst; 2022 Feb; 147(4):677-684. PubMed ID: 35083988 [TBL] [Abstract][Full Text] [Related]
10. A micellized fluorescence sensor based on amplified quenching for highly sensitive detection of non-transferrin-bound iron in serum. Park TE; Lee SH Dalton Trans; 2020 Apr; 49(15):4660-4664. PubMed ID: 32115591 [TBL] [Abstract][Full Text] [Related]
11. Protamine-Induced Supramolecular Self-Assembly of Red-Emissive Alkynylplatinum(II) 2,6-Bis(benzimidazol-2'-yl)pyridine Complex for Selective Label-Free Sensing of Heparin and Real-Time Monitoring of Trypsin Activity. Chan CW; Cheng HK; Hau FK; Chan AK; Yam VW ACS Appl Mater Interfaces; 2019 Sep; 11(35):31585-31593. PubMed ID: 31436404 [TBL] [Abstract][Full Text] [Related]
12. Reversible fluorescence modulation of BSA stabilised copper nanoclusters for the selective detection of protamine and heparin. Aparna RS; Anjali Devi JS; Anjana RR; Nebu J; George S Analyst; 2019 Feb; 144(5):1799-1808. PubMed ID: 30672921 [TBL] [Abstract][Full Text] [Related]
13. Expanding the scope of self-assembled supramolecular biosensors: a highly selective and sensitive enzyme-responsive AIE-based fluorescent biosensor for trypsin detection and inhibitor screening. Kaur J; Mirgane HA; Patil VS; Ahlawat GM; Bhosale SV; Singh PK J Mater Chem B; 2024 Apr; 12(15):3786-3796. PubMed ID: 38546335 [TBL] [Abstract][Full Text] [Related]
14. A selective and sensitive fluorescent probe for the determination of HSA and trypsin. Huang S; Li F; Liao C; Zheng B; Du J; Xiao D Talanta; 2017 Aug; 170():562-568. PubMed ID: 28501212 [TBL] [Abstract][Full Text] [Related]
15. Silver triangular nanoplates as an high efficiently FRET donor-acceptor of upconversion nanoparticles for ultrasensitive "Turn on-off" protamine and trypsin sensor. Chen H; Fang A; Zhang Y; Yao S Talanta; 2017 Nov; 174():148-155. PubMed ID: 28738561 [TBL] [Abstract][Full Text] [Related]
16. Chemical sensing of metal ions using a silica-micelle mesophase doubly functionalized by a fluorogenic ionophore and a masking agent. Suto Y; Uchida T; Kumata H; Tsuzuki M; Fujiwara K Anal Sci; 2011; 27(7):673. PubMed ID: 21747173 [TBL] [Abstract][Full Text] [Related]
17. Label-free Fluorescence Turn on Trypsin Assay Based on Gemini Surfactant/heparin/Nile Red Supramolecular Assembly. Yuan N; Jia L; Zhu J J Fluoresc; 2021 Sep; 31(5):1537-1545. PubMed ID: 34319555 [TBL] [Abstract][Full Text] [Related]
18. Fluorescence turn-on detection of protamine based on aggregation-induced emission enhancement characteristics of 4-(6'-carboxyl)hexyloxysalicylaldehyde azine. Chen XT; Xiang Y; Li N; Song PS; Tong AJ Analyst; 2010 May; 135(5):1098-105. PubMed ID: 20419262 [TBL] [Abstract][Full Text] [Related]
19. Fluorescent Strips of Electrospun Fibers for Ratiometric Sensing of Serum Heparin and Urine Trypsin. Zhao L; Wang T; Wu Q; Liu Y; Chen Z; Li X ACS Appl Mater Interfaces; 2017 Feb; 9(4):3400-3410. PubMed ID: 28067489 [TBL] [Abstract][Full Text] [Related]
20. Fluorescence detection of protamine, heparin and heparinase II based on a novel AIE molecule with four carboxyl. Jiang R; Zhao S; Chen L; Zhao M; Qi W; Fu W; Hu L; Zhang Y Int J Biol Macromol; 2020 Aug; 156():1153-1159. PubMed ID: 31756489 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]