BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 38713018)

  • 1. Trisomy 8 Defines a Distinct Subtype of Myeloproliferative Neoplasms Driven by the MYC-Alarmin Axis.
    Vincelette ND; Yu X; Kuykendall AT; Moon J; Su S; Cheng CH; Sammut R; Razabdouski TN; Nguyen HV; Eksioglu EA; Chan O; Al Ali N; Patel PC; Lee DH; Nakanishi S; Ferreira RB; Hyjek E; Mo Q; Cory S; Lawrence HR; Zhang L; Murphy DJ; Komrokji RS; Lee D; Kaufmann SH; Cleveland JL; Yun S
    Blood Cancer Discov; 2024 May; ():. PubMed ID: 38713018
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Heterogeneous bone-marrow stromal progenitors drive myelofibrosis via a druggable alarmin axis.
    Leimkühler NB; Gleitz HFE; Ronghui L; Snoeren IAM; Fuchs SNR; Nagai JS; Banjanin B; Lam KH; Vogl T; Kuppe C; Stalmann USA; Büsche G; Kreipe H; Gütgemann I; Krebs P; Banz Y; Boor P; Tai EW; Brümmendorf TH; Koschmieder S; Crysandt M; Bindels E; Kramann R; Costa IG; Schneider RK
    Cell Stem Cell; 2021 Apr; 28(4):637-652.e8. PubMed ID: 33301706
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular Genetic Profile of Myelofibrosis: Implications in the Diagnosis, Prognosis, and Treatment Advancements.
    Verma T; Papadantonakis N; Peker Barclift D; Zhang L
    Cancers (Basel); 2024 Jan; 16(3):. PubMed ID: 38339265
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inflammatory Pathophysiology as a Contributor to Myeloproliferative Neoplasms.
    Fisher DAC; Fowles JS; Zhou A; Oh ST
    Front Immunol; 2021; 12():683401. PubMed ID: 34140953
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Megakaryocytes Are Regulators of the Tumor Microenvironment and Malignant Hematopoietic Progenitor Cells in Myelofibrosis.
    Varricchio L; Hoffman R
    Front Oncol; 2022; 12():906698. PubMed ID: 35646681
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Functional Consequences of Mutations in Myeloproliferative Neoplasms.
    Constantinescu SN; Vainchenker W; Levy G; Papadopoulos N
    Hemasphere; 2021 Jun; 5(6):e578. PubMed ID: 34095761
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Circulating CD133+/–CD34– Have Increased c-
    Uslu Bıçak İ; Tokcan B; Yavuz AS; Tokdemir SS
    Turk J Haematol; 2023 Feb; 40(1):28-36. PubMed ID: 36458557
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Triple-Negative Myelofibrosis: Disease Features, Response to Treatment and Outcomes.
    Aguirre LE; Jain A; Ball S; Ali NA; Volpe VO; Tinsley-Vance S; Sallman D; Sweet K; Lancet J; Padron E; Yun S; Kuykendall A; Komrokji R
    Clin Lymphoma Myeloma Leuk; 2024 Mar; ():. PubMed ID: 38548563
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Role of tyrosine-kinase inhibitors in myeloproliferative neoplasms: comparative lessons learned.
    Pinilla-Ibarz J; Sweet KL; Corrales-Yepez GM; Komrokji RS
    Onco Targets Ther; 2016; 9():4937-57. PubMed ID: 27570458
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Increase in Frequency of Myeloid-Derived Suppressor Cells in the Bone Marrow of Myeloproliferative Neoplasm: Potential Implications in Myelofibrosis.
    Kapor S; Momčilović S; Kapor S; Mojsilović S; Radojković M; Apostolović M; Filipović B; Gotić M; Čokić V; Santibanez JF
    Adv Exp Med Biol; 2023; 1408():273-290. PubMed ID: 37093433
    [TBL] [Abstract][Full Text] [Related]  

  • 11. SRSF2 mutation reduces polycythemia and impairs hematopoietic progenitor functions in JAK2V617F-driven myeloproliferative neoplasm.
    Yang Y; Abbas S; Sayem MA; Dutta A; Mohi G
    Blood Cancer J; 2023 Nov; 13(1):171. PubMed ID: 38012156
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Classical Philadelphia-negative myeloproliferative neoplasms: focus on mutations and JAK2 inhibitors.
    Helbig G
    Med Oncol; 2018 Aug; 35(9):119. PubMed ID: 30074114
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Classical Philadelphia-negative myeloproliferative neoplasms (MPNs): A continuum of different disease entities.
    Coltro G; Loscocco GG; Vannucchi AM
    Int Rev Cell Mol Biol; 2021; 365():1-69. PubMed ID: 34756241
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Immunoblotting-assisted assessment of JAK/STAT and PI3K/Akt/mTOR signaling in myeloproliferative neoplasms CD34+ stem cells.
    Calabresi L; Balliu M; Bartalucci N
    Methods Cell Biol; 2022; 171():81-109. PubMed ID: 35953207
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Advances in the management of myelofibrosis.
    Komrokji RS; Verstovsek S; Padron E; List AF
    Cancer Control; 2012 Oct; 19(4 Suppl):4-15. PubMed ID: 23042420
    [TBL] [Abstract][Full Text] [Related]  

  • 16. JAK2 inhibitors in the treatment of myeloproliferative neoplasms.
    Tibes R; Bogenberger JM; Geyer HL; Mesa RA
    Expert Opin Investig Drugs; 2012 Dec; 21(12):1755-74. PubMed ID: 22991927
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Recent advances in therapies for primary myelofibrosis.
    Vainchenker W; Yahmi N; Havelange V; Marty C; Plo I; Constantinescu SN
    Fac Rev; 2023; 12():23. PubMed ID: 37771602
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Heterogeneity of the bone marrow niche in patients with myeloproliferative neoplasms: ActivinA secretion by mesenchymal stromal cells correlates with the degree of marrow fibrosis.
    Rambaldi B; Diral E; Donsante S; Di Marzo N; Mottadelli F; Cardinale L; Dander E; Isimbaldi G; Pioltelli P; Biondi A; Riminucci M; D'Amico G; Elli EM; Pievani A; Serafini M
    Ann Hematol; 2021 Jan; 100(1):105-116. PubMed ID: 33089365
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The role of JAK2 inhibitors in MPNs 7 years after approval.
    Passamonti F; Maffioli M
    Blood; 2018 May; 131(22):2426-2435. PubMed ID: 29650801
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spleen deflation and beyond: the pros and cons of Janus kinase 2 inhibitor therapy for patients with myeloproliferative neoplasms.
    Quintás-Cardama A; Verstovsek S
    Cancer; 2012 Feb; 118(4):870-7. PubMed ID: 21766300
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.