These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
347 related articles for article (PubMed ID: 38713090)
1. Mitochondrial Calcium Regulation of Cardiac Metabolism in Health and Disease. Balderas E; Lee SHJ; Rai NK; Mollinedo DM; Duron HE; Chaudhuri D Physiology (Bethesda); 2024 Sep; 39(5):0. PubMed ID: 38713090 [TBL] [Abstract][Full Text] [Related]
2. Beyond the TCA cycle: new insights into mitochondrial calcium regulation of oxidative phosphorylation. Lee SH; Duron HE; Chaudhuri D Biochem Soc Trans; 2023 Aug; 51(4):1661-1673. PubMed ID: 37641565 [TBL] [Abstract][Full Text] [Related]
3. Loss of Mitochondrial Ca Bertero E; Nickel A; Kohlhaas M; Hohl M; Sequeira V; Brune C; Schwemmlein J; Abeßer M; Schuh K; Kutschka I; Carlein C; Münker K; Atighetchi S; Müller A; Kazakov A; Kappl R; von der Malsburg K; van der Laan M; Schiuma AF; Böhm M; Laufs U; Hoth M; Rehling P; Kuhn M; Dudek J; von der Malsburg A; Prates Roma L; Maack C Circulation; 2021 Nov; 144(21):1694-1713. PubMed ID: 34648376 [TBL] [Abstract][Full Text] [Related]
4. Inhibition of MCU forces extramitochondrial adaptations governing physiological and pathological stress responses in heart. Rasmussen TP; Wu Y; Joiner ML; Koval OM; Wilson NR; Luczak ED; Wang Q; Chen B; Gao Z; Zhu Z; Wagner BA; Soto J; McCormick ML; Kutschke W; Weiss RM; Yu L; Boudreau RL; Abel ED; Zhan F; Spitz DR; Buettner GR; Song LS; Zingman LV; Anderson ME Proc Natl Acad Sci U S A; 2015 Jul; 112(29):9129-34. PubMed ID: 26153425 [TBL] [Abstract][Full Text] [Related]
5. MCU overexpression evokes disparate dose-dependent effects on mito-ROS and spontaneous Ca Hamilton S; Terentyeva R; Perger F; Hernández Orengo B; Martin B; Gorr MW; Belevych AE; Clements RT; Györke S; Terentyev D Am J Physiol Heart Circ Physiol; 2021 Oct; 321(4):H615-H632. PubMed ID: 34415186 [TBL] [Abstract][Full Text] [Related]
6. Mitochondrial membrane potential instability on reperfusion after ischemia does not depend on mitochondrial Ca Ashok D; Papanicolaou K; Sidor A; Wang M; Solhjoo S; Liu T; O'Rourke B J Biol Chem; 2023 Jun; 299(6):104708. PubMed ID: 37061004 [TBL] [Abstract][Full Text] [Related]
7. Calcium Signaling and Reactive Oxygen Species in Mitochondria. Bertero E; Maack C Circ Res; 2018 May; 122(10):1460-1478. PubMed ID: 29748369 [TBL] [Abstract][Full Text] [Related]
8. Increased RyR2 activity is exacerbated by calcium leak-induced mitochondrial ROS. Hamilton S; Terentyeva R; Martin B; Perger F; Li J; Stepanov A; Bonilla IM; Knollmann BC; Radwański PB; Györke S; Belevych AE; Terentyev D Basic Res Cardiol; 2020 May; 115(4):38. PubMed ID: 32444920 [TBL] [Abstract][Full Text] [Related]
9. Mitochondrial calcium and the regulation of metabolism in the heart. Williams GS; Boyman L; Lederer WJ J Mol Cell Cardiol; 2015 Jan; 78():35-45. PubMed ID: 25450609 [TBL] [Abstract][Full Text] [Related]
10. An integrated model of cardiac mitochondrial energy metabolism and calcium dynamics. Cortassa S; Aon MA; Marbán E; Winslow RL; O'Rourke B Biophys J; 2003 Apr; 84(4):2734-55. PubMed ID: 12668482 [TBL] [Abstract][Full Text] [Related]
11. The SR-mitochondria interaction: a new player in cardiac pathophysiology. Ruiz-Meana M; Fernandez-Sanz C; Garcia-Dorado D Cardiovasc Res; 2010 Oct; 88(1):30-9. PubMed ID: 20615915 [TBL] [Abstract][Full Text] [Related]
12. Elevated cytosolic Na+ increases mitochondrial formation of reactive oxygen species in failing cardiac myocytes. Kohlhaas M; Liu T; Knopp A; Zeller T; Ong MF; Böhm M; O'Rourke B; Maack C Circulation; 2010 Apr; 121(14):1606-13. PubMed ID: 20351235 [TBL] [Abstract][Full Text] [Related]
14. Regulation of mitochondrial Ca2+ and its effects on energetics and redox balance in normal and failing heart. Liu T; O'Rourke B J Bioenerg Biomembr; 2009 Apr; 41(2):127-32. PubMed ID: 19390955 [TBL] [Abstract][Full Text] [Related]
15. Distinct mPTP activation mechanisms in ischaemia-reperfusion: contributions of Ca2+, ROS, pH, and inorganic polyphosphate. Seidlmayer LK; Juettner VV; Kettlewell S; Pavlov EV; Blatter LA; Dedkova EN Cardiovasc Res; 2015 May; 106(2):237-48. PubMed ID: 25742913 [TBL] [Abstract][Full Text] [Related]
16. Glutamate excitotoxicity and Ca2+-regulation of respiration: Role of the Ca2+ activated mitochondrial transporters (CaMCs). Rueda CB; Llorente-Folch I; Traba J; Amigo I; Gonzalez-Sanchez P; Contreras L; Juaristi I; Martinez-Valero P; Pardo B; Del Arco A; Satrustegui J Biochim Biophys Acta; 2016 Aug; 1857(8):1158-1166. PubMed ID: 27060251 [TBL] [Abstract][Full Text] [Related]
17. SR and mitochondria: calcium cross-talk between kissing cousins. Dorn GW; Maack C J Mol Cell Cardiol; 2013 Feb; 55():42-9. PubMed ID: 22902320 [TBL] [Abstract][Full Text] [Related]
18. Mitochondrial Ca2+ influx and efflux rates in guinea pig cardiac mitochondria: low and high affinity effects of cyclosporine A. Wei AC; Liu T; Cortassa S; Winslow RL; O'Rourke B Biochim Biophys Acta; 2011 Jul; 1813(7):1373-81. PubMed ID: 21362444 [TBL] [Abstract][Full Text] [Related]
19. Redox regulation of sodium and calcium handling. Wagner S; Rokita AG; Anderson ME; Maier LS Antioxid Redox Signal; 2013 Mar; 18(9):1063-77. PubMed ID: 22900788 [TBL] [Abstract][Full Text] [Related]
20. Distinct effects of cardiac mitochondrial calcium uniporter inactivation via EMRE deletion in the short and long term. Chapoy Villanueva H; Sung JH; Stevens JA; Zhang MJ; Nelson PM; Denduluri LS; Feng F; O'Connell TD; Townsend D; Liu JC J Mol Cell Cardiol; 2023 Aug; 181():33-45. PubMed ID: 37230379 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]