These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Drag Reduction Technology of Water Flow on Microstructured Surfaces: A Novel Perspective from Vortex Distributions and Densities. Liu C; Wang W; Hu X; Liu F Materials (Basel); 2023 Feb; 16(5):. PubMed ID: 36902954 [TBL] [Abstract][Full Text] [Related]
3. Bioinspired Cavity Regulation on Superhydrophobic Spheres for Drag Reduction in an Aqueous Medium. Yao C; Zhang J; Xue Z; Yu K; Yu X; Yang X; Qu Q; Gan W; Wang J; Jiang L ACS Appl Mater Interfaces; 2021 Jan; 13(3):4796-4803. PubMed ID: 33448779 [TBL] [Abstract][Full Text] [Related]
4. Bio-inspired dewetted surfaces based on SiC/Si interlocked structures for enhanced-underwater stability and regenerative-drag reduction capability. Lee BJ; Zhang Z; Baek S; Kim S; Kim D; Yong K Sci Rep; 2016 Apr; 6():24653. PubMed ID: 27095674 [TBL] [Abstract][Full Text] [Related]
5. Pyramid-Shaped Superhydrophobic Surfaces for Underwater Drag Reduction. Zhang L; Wan X; Zhou X; Cao Y; Duan H; Yan J; Li H; Lv P ACS Appl Mater Interfaces; 2024 Aug; 16(33):44319-44327. PubMed ID: 39110849 [TBL] [Abstract][Full Text] [Related]
8. Drag reduction using bionic groove surface for underwater vehicles. Zheng S; Liang X; Li J; Liu Y; Tang J Front Bioeng Biotechnol; 2023; 11():1223691. PubMed ID: 37691898 [No Abstract] [Full Text] [Related]
9. Drag reductions and the air-water interface stability of superhydrophobic surfaces in rectangular channel flow. Zhang J; Yao Z; Hao P Phys Rev E; 2016 Nov; 94(5-1):053117. PubMed ID: 27967180 [TBL] [Abstract][Full Text] [Related]
10. Fluid drag reduction and efficient self-cleaning with rice leaf and butterfly wing bioinspired surfaces. Bixler GD; Bhushan B Nanoscale; 2013 Sep; 5(17):7685-710. PubMed ID: 23884183 [TBL] [Abstract][Full Text] [Related]
11. Armored Superhydrophobic Surfaces with Excellent Drag Reduction in Complex Environmental Conditions. Wang Z; Liu X; Guo Y; Tong B; Zhang G; Liu K; Jiao Y Langmuir; 2024 Feb; ():. PubMed ID: 38335533 [TBL] [Abstract][Full Text] [Related]
12. Sustained drag reduction in a turbulent flow using a low-temperature Leidenfrost surface. Saranadhi D; Chen D; Kleingartner JA; Srinivasan S; Cohen RE; McKinley GH Sci Adv; 2016 Oct; 2(10):e1600686. PubMed ID: 27757417 [TBL] [Abstract][Full Text] [Related]
13. Underwater restoration and retention of gases on superhydrophobic surfaces for drag reduction. Lee C; Kim CJ Phys Rev Lett; 2011 Jan; 106(1):014502. PubMed ID: 21231747 [TBL] [Abstract][Full Text] [Related]
14. Plastron Regeneration on Submerged Superhydrophobic Surfaces Using In Situ Gas Generation by Chemical Reaction. Panchanathan D; Rajappan A; Varanasi KK; McKinley GH ACS Appl Mater Interfaces; 2018 Oct; 10(39):33684-33692. PubMed ID: 30184437 [TBL] [Abstract][Full Text] [Related]
15. Underwater Drag Reduction and Buoyancy Enhancement on Biomimetic Antiabrasive Superhydrophobic Coatings. Wang Z; Liu X; Ji J; Tao T; Zhang T; Xu J; Jiao Y; Liu K ACS Appl Mater Interfaces; 2021 Oct; 13(40):48270-48280. PubMed ID: 34592810 [TBL] [Abstract][Full Text] [Related]
16. Rice- and butterfly-wing effect inspired self-cleaning and low drag micro/nanopatterned surfaces in water, oil, and air flow. Bixler GD; Bhushan B Nanoscale; 2014 Jan; 6(1):76-96. PubMed ID: 24212921 [TBL] [Abstract][Full Text] [Related]
17. Superhydrophobic surfaces of the water bug Notonecta glauca: a model for friction reduction and air retention. Ditsche-Kuru P; Schneider ES; Melskotte JE; Brede M; Leder A; Barthlott W Beilstein J Nanotechnol; 2011; 2():137-44. PubMed ID: 21977425 [TBL] [Abstract][Full Text] [Related]
18. Numerical investigation of the effect of air layer on drag reduction in channel flow over a superhydrophobic surface. Nguyen HT; Lee SW; Ryu J; Kim M; Yoon J; Chang K Sci Rep; 2024 May; 14(1):12053. PubMed ID: 38802500 [TBL] [Abstract][Full Text] [Related]
19. Water Impalement Resistance and Drag Reduction of the Superhydrophobic Surface with Hydrophilic Strips. Cao Y; Liu X; Zhang L; Wu Y; You C; Li H; Duan H; Huang J; Lv P ACS Appl Mater Interfaces; 2024 Apr; 16(13):16973-16982. PubMed ID: 38502909 [TBL] [Abstract][Full Text] [Related]
20. Improved Stable Drag Reduction of Controllable Laser-Patterned Superwetting Surfaces Containing Bioinspired Micro/Nanostructured Arrays. Rong W; Zhang H; Mao Z; Chen L; Liu X ACS Omega; 2022 Jan; 7(2):2049-2063. PubMed ID: 35071893 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]