These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
155 related articles for article (PubMed ID: 38714047)
41. Are multi-detector computed tomography and cone-beam computed tomography exams and software accurate to measure the upper airway? A systematic review. Templier L; Rossi C; Lagravère Vich M; Fernández Pujol R; Muwanguzi M; Gianoni-Capenakas S Eur J Orthod; 2023 Nov; 45(6):818-831. PubMed ID: 37797294 [TBL] [Abstract][Full Text] [Related]
42. Endodontic Treatment Outcomes in Cone Beam Computed Tomography Images-Assessment of the Diagnostic Accuracy of AI. Kazimierczak W; Kazimierczak N; Issa J; Wajer R; Wajer A; Kalka S; Serafin Z J Clin Med; 2024 Jul; 13(14):. PubMed ID: 39064157 [No Abstract] [Full Text] [Related]
43. Performance of artificial intelligence using oral and maxillofacial CBCT images: A systematic review and meta-analysis. Badr FF; Jadu FM Niger J Clin Pract; 2022 Nov; 25(11):1918-1927. PubMed ID: 36412301 [TBL] [Abstract][Full Text] [Related]
44. A deep learning algorithm proposal to automatic pharyngeal airway detection and segmentation on CBCT images. Sin Ç; Akkaya N; Aksoy S; Orhan K; Öz U Orthod Craniofac Res; 2021 Dec; 24 Suppl 2():117-123. PubMed ID: 33619828 [TBL] [Abstract][Full Text] [Related]
45. Comparison between Radiographic (2-dimensional and 3-dimensional) and Histologic Findings of Periapical Lesions Treated with Apical Surgery. Bornstein MM; Bingisser AC; Reichart PA; Sendi P; Bosshardt DD; von Arx T J Endod; 2015 Jun; 41(6):804-11. PubMed ID: 25863407 [TBL] [Abstract][Full Text] [Related]
46. Automatic Feature Segmentation in Dental Periapical Radiographs. Ari T; Sağlam H; Öksüzoğlu H; Kazan O; Bayrakdar İŞ; Duman SB; Çelik Ö; Jagtap R; Futyma-Gąbka K; Różyło-Kalinowska I; Orhan K Diagnostics (Basel); 2022 Dec; 12(12):. PubMed ID: 36553088 [TBL] [Abstract][Full Text] [Related]
47. Development and validation of a novel artificial intelligence driven tool for accurate mandibular canal segmentation on CBCT. Lahoud P; Diels S; Niclaes L; Van Aelst S; Willems H; Van Gerven A; Quirynen M; Jacobs R J Dent; 2022 Jan; 116():103891. PubMed ID: 34780873 [TBL] [Abstract][Full Text] [Related]
48. The detection of periapical pathoses using digital periapical radiography and cone beam computed tomography in endodontically retreated teeth - part 2: a 1 year post-treatment follow-up. Davies A; Patel S; Foschi F; Andiappan M; Mitchell PJ; Mannocci F Int Endod J; 2016 Jul; 49(7):623-35. PubMed ID: 26174351 [TBL] [Abstract][Full Text] [Related]
49. Accuracy of deep learning-based upper airway segmentation. Süküt Y; Yurdakurban E; Duran GS J Stomatol Oral Maxillofac Surg; 2024 Sep; ():102048. PubMed ID: 39244033 [TBL] [Abstract][Full Text] [Related]
51. Reliability and accuracy of a semi-automatic segmentation protocol of the nasal cavity using cone beam computed tomography in patients with sleep apnea. Chen H; Lv T; Luo Q; Li L; Wang Q; Li Y; Zhou D; Emami E; Schmittbuhl M; van der Stelt P; Huynh N Clin Oral Investig; 2023 Nov; 27(11):6813-6821. PubMed ID: 37796336 [TBL] [Abstract][Full Text] [Related]
52. An artificial intelligence grading system of apical periodontitis in cone-beam computed tomography data. Zhao T; Wu H; Leng D; Yao E; Gu S; Yao M; Zhang Q; Wang T; Wu D; Xie L Dentomaxillofac Radiol; 2024 Oct; 53(7):447-458. PubMed ID: 38960866 [TBL] [Abstract][Full Text] [Related]
53. Influence of exposure protocol, voxel size, and artifact removal algorithm on the trueness of segmentation utilizing an artificial-intelligence-based system. Alrashed S; Dutra V; Chu TG; Yang CC; Lin WS J Prosthodont; 2024 Jul; 33(6):574-583. PubMed ID: 38305665 [TBL] [Abstract][Full Text] [Related]
54. Interpretation of chemically created periapical lesions using 2 different dental cone-beam computerized tomography units, an intraoral digital sensor, and conventional film. Ozen T; Kamburoğlu K; Cebeci AR; Yüksel SP; Paksoy CS Oral Surg Oral Med Oral Pathol Oral Radiol Endod; 2009 Mar; 107(3):426-32. PubMed ID: 18996725 [TBL] [Abstract][Full Text] [Related]
55. Micro-Computed Tomography-Guided Artificial Intelligence for Pulp Cavity and Tooth Segmentation on Cone-beam Computed Tomography. Lin X; Fu Y; Ren G; Yang X; Duan W; Chen Y; Zhang Q J Endod; 2021 Dec; 47(12):1933-1941. PubMed ID: 34520812 [TBL] [Abstract][Full Text] [Related]
56. Detection of periapical bone defects in human jaws using cone beam computed tomography and intraoral radiography. Patel S; Dawood A; Mannocci F; Wilson R; Pitt Ford T Int Endod J; 2009 Jun; 42(6):507-15. PubMed ID: 19298574 [TBL] [Abstract][Full Text] [Related]
57. AI-based automatic segmentation of craniomaxillofacial anatomy from CBCT scans for automatic detection of pharyngeal airway evaluations in OSA patients. Orhan K; Shamshiev M; Ezhov M; Plaksin A; Kurbanova A; Ünsal G; Gusarev M; Golitsyna M; Aksoy S; Mısırlı M; Rasmussen F; Shumilov E; Sanders A Sci Rep; 2022 Jul; 12(1):11863. PubMed ID: 35831451 [TBL] [Abstract][Full Text] [Related]
58. Evaluating the accuracy of automated cephalometric analysis based on artificial intelligence. Bao H; Zhang K; Yu C; Li H; Cao D; Shu H; Liu L; Yan B BMC Oral Health; 2023 Apr; 23(1):191. PubMed ID: 37005593 [TBL] [Abstract][Full Text] [Related]
59. Fully automatic AI segmentation of oral surgery-related tissues based on cone beam computed tomography images. Liu Y; Xie R; Wang L; Liu H; Liu C; Zhao Y; Bai S; Liu W Int J Oral Sci; 2024 May; 16(1):34. PubMed ID: 38719817 [TBL] [Abstract][Full Text] [Related]
60. Prevalence and Size of Periapical Radiolucencies Using Cone-beam Computed Tomography in Teeth without Apparent Intraoral Radiographic Lesions: A New Periapical Index with a Clinical Recommendation. Torabinejad M; Rice DD; Maktabi O; Oyoyo U; Abramovitch K J Endod; 2018 Mar; 44(3):389-394. PubMed ID: 29395115 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]