BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 38714112)

  • 21. Effect of xanthan gum or pectin addition on Sacha Inchi oil-in-water emulsions stabilized by ovalbumin or tween 80: Droplet size distribution, rheological behavior and stability.
    Vicente J; Pereira LJB; Bastos LPH; de Carvalho MG; Garcia-Rojas EE
    Int J Biol Macromol; 2018 Dec; 120(Pt A):339-345. PubMed ID: 30114428
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Polyether-modified siloxane stabilized dispersion system on the physical stability and control release of double (W/O/W) emulsions.
    Lin C; Debeli DK; Gan L; Deng J; Hu L; Shan G
    Food Chem; 2020 Dec; 332():127381. PubMed ID: 32603917
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effect of outer water phase composition on oil droplet size and yield of (w
    Oppermann AKL; Noppers JME; Stieger M; Scholten E
    Food Res Int; 2018 May; 107():148-157. PubMed ID: 29580472
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Can we prevent lipid oxidation in emulsions by using fat-based Pickering particles?
    Schröder A; Sprakel J; Boerkamp W; Schroën K; Berton-Carabin CC
    Food Res Int; 2019 Jun; 120():352-363. PubMed ID: 31000249
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Mechanisms of lipid oxidation in water-in-oil emulsions and oxidomics-guided discovery of targeted protective approaches.
    Bao Y; Pignitter M
    Compr Rev Food Sci Food Saf; 2023 Jul; 22(4):2678-2705. PubMed ID: 37097053
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effects of Chelating Agents and Salts on Interfacial Properties and Lipid Oxidation in Oil-in-Water Emulsions.
    Liu J; Guo Y; Li X; Si T; McClements DJ; Ma C
    J Agric Food Chem; 2019 Dec; 67(49):13718-13727. PubMed ID: 30614702
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Droplet size dependency and spatial heterogeneity of lipid oxidation in whey protein isolate-stabilized emulsions.
    Yang S; Ten Klooster S; Nguyen KA; Hennebelle M; Berton-Carabin C; Schroën K; van Duynhoven JPM; Hohlbein J
    Food Res Int; 2024 Jul; 188():114341. PubMed ID: 38823851
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Water-in-oil-in-water double emulsions loaded with chlorogenic acid: release mechanisms and oxidative stability.
    Dima C; Dima S
    J Microencapsul; 2018 Sep; 35(6):584-599. PubMed ID: 30557070
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Formation of stable nanoemulsions by ultrasound-assisted two-step emulsification process for topical drug delivery: Effect of oil phase composition and surfactant concentration and loratadine as ripening inhibitor.
    Sarheed O; Shouqair D; Ramesh KVRNS; Khaleel T; Amin M; Boateng J; Drechsler M
    Int J Pharm; 2020 Feb; 576():118952. PubMed ID: 31843549
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Systematic comparison of structural and lipid oxidation in oil-in-water and water-in-oil biphasic emulgels: effect of emulsion type, oil-phase composition, and oil fraction.
    Chen XW; Hu QH; Li XX; Ma CG
    J Sci Food Agric; 2022 Aug; 102(10):4200-4209. PubMed ID: 35018645
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Lipid oxidation in water-in-olive oil emulsions initiated by a lipophilic radical source.
    Mosca M; Ceglie A; Ambrosone L
    J Phys Chem B; 2010 Mar; 114(10):3550-8. PubMed ID: 20175548
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Localized lipid autoxidation initiated by two-photon irradiation within single oil droplets in oil-in-water emulsions.
    Raudsepp P; Brüggemann DA; Knudsen JC; Andersen ML
    Food Chem; 2016 May; 199():760-7. PubMed ID: 26776033
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Kinetic study of aggregation of milk protein and/or surfactant-stabilized oil-in-water emulsions by sedimentation field-flow fractionation.
    Kenta S; Raikos V; Vagena A; Sevastos D; Kapolos J; Koliadima A; Karaiskakis G
    J Chromatogr A; 2013 Aug; 1305():221-9. PubMed ID: 23899382
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Ability of surfactant hydrophobic tail group size to alter lipid oxidation in oil-in-water emulsions.
    Chaiyasit W; Silvestre MP; McClements DJ; Decker EA
    J Agric Food Chem; 2000 Aug; 48(8):3077-80. PubMed ID: 10956071
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Lipid digestion of oil-in-water emulsions stabilized with low molecular weight surfactants.
    Ng N; Chen PX; Ghazani SM; Wright AJ; Marangoni A; Goff HD; Joye IJ; Rogers MA
    Food Funct; 2019 Dec; 10(12):8195-8207. PubMed ID: 31701112
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Antioxidant Properties of Astaxanthin in Oil-in-Water Emulsions with Differently-Charged Emulsifiers Under Chlorophyll Photosensitization.
    Yi B; Kim MJ; Lee J
    J Food Sci; 2018 Mar; 83(3):589-596. PubMed ID: 29412454
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The effects of surfactant type, pH, and chelators on the oxidation of salmon oil-in-water emulsions.
    Mancuso JR; McClements DJ; Decker EA
    J Agric Food Chem; 1999 Oct; 47(10):4112-6. PubMed ID: 10552775
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Impact of Polyunsaturated Fatty Acid Dilution and Antioxidant Addition on Lipid Oxidation Kinetics in Oil/Water Emulsions.
    Culler MD; Inchingolo R; McClements DJ; Decker EA
    J Agric Food Chem; 2021 Jan; 69(2):750-755. PubMed ID: 33403856
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Contribution of the interfacial layer to the protection of emulsified lipids against oxidation.
    Berton C; Ropers MH; Viau M; Genot C
    J Agric Food Chem; 2011 May; 59(9):5052-61. PubMed ID: 21480612
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Surface-active solid lipid nanoparticles as Pickering stabilizers for oil-in-water emulsions.
    Gupta R; Rousseau D
    Food Funct; 2012 Mar; 3(3):302-11. PubMed ID: 22237667
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.