BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 38714942)

  • 1. Dataset including whole blood gene expression profiles and matched leukocyte counts with utility for benchmarking cellular deconvolution pipelines.
    O'Connell GC
    BMC Genom Data; 2024 May; 25(1):45. PubMed ID: 38714942
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spotless, a reproducible pipeline for benchmarking cell type deconvolution in spatial transcriptomics.
    Sang-Aram C; Browaeys R; Seurinck R; Saeys Y
    Elife; 2024 May; 12():. PubMed ID: 38787371
    [TBL] [Abstract][Full Text] [Related]  

  • 3. MuSiC2: cell-type deconvolution for multi-condition bulk RNA-seq data.
    Fan J; Lyu Y; Zhang Q; Wang X; Li M; Xiao R
    Brief Bioinform; 2022 Nov; 23(6):. PubMed ID: 36208175
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Performance of computational algorithms to deconvolve heterogeneous bulk ovarian tumor tissue depends on experimental factors.
    Hippen AA; Omran DK; Weber LM; Jung E; Drapkin R; Doherty JA; Hicks SC; Greene CS
    Genome Biol; 2023 Oct; 24(1):239. PubMed ID: 37864274
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fourteen years of cellular deconvolution: methodology, applications, technical evaluationĀ and outstanding challenges.
    Nguyen H; Nguyen H; Tran D; Draghici S; Nguyen T
    Nucleic Acids Res; 2024 May; 52(9):4761-4783. PubMed ID: 38619038
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Benchmarking pipelines for subclonal deconvolution of bulk tumour sequencing data.
    Tanner G; Westhead DR; Droop A; Stead LF
    Nat Commun; 2021 Nov; 12(1):6396. PubMed ID: 34737285
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A benchmarking of pipelines for detecting ncRNAs from RNA-Seq data.
    Di Bella S; La Ferlita A; Carapezza G; Alaimo S; Isacchi A; Ferro A; Pulvirenti A; Bosotti R
    Brief Bioinform; 2020 Dec; 21(6):1987-1998. PubMed ID: 31740918
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effective methods for bulk RNA-seq deconvolution using scnRNA-seq transcriptomes.
    Cobos FA; Panah MJN; Epps J; Long X; Man TK; Chiu HS; Chomsky E; Kiner E; Krueger MJ; di Bernardo D; Voloch L; Molenaar J; van Hooff SR; Westermann F; Jansky S; Redell ML; Mestdagh P; Sumazin P
    Genome Biol; 2023 Aug; 24(1):177. PubMed ID: 37528411
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Benchmarking of cell type deconvolution pipelines for transcriptomics data.
    Avila Cobos F; Alquicira-Hernandez J; Powell JE; Mestdagh P; De Preter K
    Nat Commun; 2020 Nov; 11(1):5650. PubMed ID: 33159064
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comprehensive evaluation of RNA-seq quantification methods for linearity.
    Jin H; Wan YW; Liu Z
    BMC Bioinformatics; 2017 Mar; 18(Suppl 4):117. PubMed ID: 28361706
    [TBL] [Abstract][Full Text] [Related]  

  • 11. New generative methods for single-cell transcriptome data in bulk RNA sequence deconvolution.
    Nishikawa T; Lee M; Amau M
    Sci Rep; 2024 Feb; 14(1):4156. PubMed ID: 38378978
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Donor white blood cell differential is the single largest determinant of whole blood gene expression patterns.
    O'Connell GC; Wang J; Smothers C
    Genomics; 2023 Nov; 115(6):110708. PubMed ID: 37730167
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Benchmark of cellular deconvolution methods using a multi-assay reference dataset from postmortem human prefrontal cortex.
    Huuki-Myers LA; Montgomery KD; Kwon SH; Cinquemani S; Eagles NJ; Gonzalez-Padilla D; Maden SK; Kleinman JE; Hyde TM; Hicks SC; Maynard KR; Collado-Torres L
    bioRxiv; 2024 Apr; ():. PubMed ID: 38405805
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Benchmarking of RNA-sequencing analysis workflows using whole-transcriptome RT-qPCR expression data.
    Everaert C; Luypaert M; Maag JLV; Cheng QX; Dinger ME; Hellemans J; Mestdagh P
    Sci Rep; 2017 May; 7(1):1559. PubMed ID: 28484260
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Bloody Primer: Analysis of RNA-Seq from Tissue Admixtures.
    Shannon CP; Yang CX; Tebbutt SJ
    Methods Mol Biol; 2018; 1712():175-201. PubMed ID: 29224075
    [TBL] [Abstract][Full Text] [Related]  

  • 16. IBRAP: integrated benchmarking single-cell RNA-sequencing analytical pipeline.
    Knight CH; Khan F; Patel A; Gill US; Okosun J; Wang J
    Brief Bioinform; 2023 Mar; 24(2):. PubMed ID: 36847692
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Variability in donor leukocyte counts confound the use of common RNA sequencing data normalization strategies in transcriptomic biomarker studies performed with whole blood.
    O'Connell GC
    Sci Rep; 2023 Sep; 13(1):15514. PubMed ID: 37726353
    [TBL] [Abstract][Full Text] [Related]  

  • 18. SimBA: A methodology and tools for evaluating the performance of RNA-Seq bioinformatic pipelines.
    Audoux J; Salson M; Grosset CF; Beaumeunier S; Holder JM; Commes T; Philippe N
    BMC Bioinformatics; 2017 Sep; 18(1):428. PubMed ID: 28969586
    [TBL] [Abstract][Full Text] [Related]  

  • 19. SimBu: bias-aware simulation of bulk RNA-seq data with variable cell-type composition.
    Dietrich A; Sturm G; Merotto L; Marini F; Finotello F; List M
    Bioinformatics; 2022 Sep; 38(Suppl_2):ii141-ii147. PubMed ID: 36124800
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Benchmarking differential expression analysis tools for RNA-Seq: normalization-based vs. log-ratio transformation-based methods.
    Quinn TP; Crowley TM; Richardson MF
    BMC Bioinformatics; 2018 Jul; 19(1):274. PubMed ID: 30021534
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.