BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 38715250)

  • 21. Reallocation of Soluble Sugars and IAA Regulation in Association with Enhanced Stolon Growth by Elevated CO
    Yu J; Li M; Li Q; Wang R; Li R; Yang Z
    Plants (Basel); 2022 Jun; 11(11):. PubMed ID: 35684273
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Differential proteomic responses to water stress induced by PEG in two creeping bentgrass cultivars differing in stress tolerance.
    Xu C; Huang B
    J Plant Physiol; 2010 Nov; 167(17):1477-85. PubMed ID: 20674080
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Overexpression of an Arabidopsis β-glucosidase gene enhances drought resistance with dwarf phenotype in creeping bentgrass.
    Han YJ; Cho KC; Hwang OJ; Choi YS; Shin AY; Hwang I; Kim JI
    Plant Cell Rep; 2012 Sep; 31(9):1677-86. PubMed ID: 22569964
    [TBL] [Abstract][Full Text] [Related]  

  • 24. γ-Aminobutyric Acid Priming Alleviates Acid-Aluminum Toxicity to Creeping Bentgrass by Regulating Metabolic Homeostasis.
    Zhou M; Yuan Y; Lin J; Lin L; Zhou J; Li Z
    Int J Mol Sci; 2023 Sep; 24(18):. PubMed ID: 37762612
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Protein profile analysis of salt-responsive proteins in leaves and roots in two cultivars of creeping bentgrass differing in salinity tolerance.
    Xu C; Sibicky T; Huang B
    Plant Cell Rep; 2010 Jun; 29(6):595-615. PubMed ID: 20361191
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Adaptability to abiotic stress regulated by γ-aminobutyric acid in relation to alterations of endogenous polyamines and organic metabolites in creeping bentgrass.
    Li Z; Cheng B; Peng Y; Zhang Y
    Plant Physiol Biochem; 2020 Dec; 157():185-194. PubMed ID: 33120110
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Manipulating expression of tonoplast transporters.
    Li Z; Zhou M; Hu Q; Reighard S; Yuan S; Yuan N; San B; Li D; Jia H; Luo H
    Methods Mol Biol; 2012; 913():359-69. PubMed ID: 22895772
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Root respiratory characteristics associated with plant adaptation to high soil temperature for geothermal and turf-type Agrostis species.
    Rachmilevitch S; Lambers H; Huang B
    J Exp Bot; 2006; 57(3):623-31. PubMed ID: 16396999
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Selection of reference genes for quantitative real-time PCR normalization in creeping bentgrass involved in four abiotic stresses.
    Chen Y; Hu B; Tan Z; Liu J; Yang Z; Li Z; Huang B
    Plant Cell Rep; 2015 Oct; 34(10):1825-34. PubMed ID: 26179072
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Transcriptomic analysis reveals unique molecular factors for lipid hydrolysis, secondary cell-walls and oxidative protection associated with thermotolerance in perennial grass.
    Xu Y; Huang B
    BMC Genomics; 2018 Jan; 19(1):70. PubMed ID: 29357827
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Expression of zma-miR169 miRNAs and their target ZmNF-YA genes in response to abiotic stress in maize leaves.
    Luan M; Xu M; Lu Y; Zhang L; Fan Y; Wang L
    Gene; 2015 Jan; 555(2):178-85. PubMed ID: 25445264
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Polyamines Metabolism Interacts with γ-Aminobutyric Acid, Proline and Nitrogen Metabolisms to Affect Drought Tolerance of Creeping Bentgrass.
    Tan M; Hassan MJ; Peng Y; Feng G; Huang L; Liu L; Liu W; Han L; Li Z
    Int J Mol Sci; 2022 Mar; 23(5):. PubMed ID: 35269921
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Chitosan regulates metabolic balance, polyamine accumulation, and Na
    Geng W; Li Z; Hassan MJ; Peng Y
    BMC Plant Biol; 2020 Nov; 20(1):506. PubMed ID: 33148164
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Comparative transcriptomic analysis reveals common molecular factors responsive to heat and drought stress in Agrostis stolonifera.
    Xu Y; Huang B
    Sci Rep; 2018 Oct; 8(1):15181. PubMed ID: 30315246
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Heat shock proteins in relation to heat stress tolerance of creeping bentgrass at different N levels.
    Wang K; Zhang X; Goatley M; Ervin E
    PLoS One; 2014; 9(7):e102914. PubMed ID: 25050702
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Adaptability to High Temperature and Stay-Green Genotypes Associated With Variations in Antioxidant, Chlorophyll Metabolism, and γ-Aminobutyric Acid Accumulation in Creeping Bentgrass Species.
    Li Z; Tang M; Hassan MJ; Zhang Y; Han L; Peng Y
    Front Plant Sci; 2021; 12():750728. PubMed ID: 34777429
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Genome-wide analysis reveals four key transcription factors associated with cadmium stress in creeping bentgrass (
    Yuan J; Bai Y; Chao Y; Sun X; He C; Liang X; Xie L; Han L
    PeerJ; 2018; 6():e5191. PubMed ID: 30083437
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Assessing Heat Tolerance in Creeping Bentgrass Lines Based on Physiological Responses.
    Fan Q; Jespersen D
    Plants (Basel); 2022 Dec; 12(1):. PubMed ID: 36616176
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Enhancing cytokinin synthesis by overexpressing ipt alleviated drought inhibition of root growth through activating ROS-scavenging systems in Agrostis stolonifera.
    Xu Y; Burgess P; Zhang X; Huang B
    J Exp Bot; 2016 Mar; 67(6):1979-92. PubMed ID: 26889010
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Expression of a novel antimicrobial peptide Penaeidin4-1 in creeping bentgrass (Agrostis stolonifera L.) enhances plant fungal disease resistance.
    Zhou M; Hu Q; Li Z; Li D; Chen CF; Luo H
    PLoS One; 2011; 6(9):e24677. PubMed ID: 21931807
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.