BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 38715649)

  • 1. Sensitive and high laser damage threshold substrates for surface-enhanced Raman scattering based on gold and silver nanoparticles.
    Mayr F; Zimmerleiter R; Farias PMA; Bednorz M; Salinas Y; Galembek A; Cardozo ODF; Wielend D; Oliveira D; Milani R; Brito-Silva TM; Brandstetter M; Padrón-Hernández E; Burgholzer P; Stingl A; Scharber MC; Sariciftci NS
    Anal Sci Adv; 2023 Dec; 4(11-12):335-346. PubMed ID: 38715649
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fabrication of gold nanoparticle-embedded metal-organic framework for highly sensitive surface-enhanced Raman scattering detection.
    Hu Y; Liao J; Wang D; Li G
    Anal Chem; 2014 Apr; 86(8):3955-63. PubMed ID: 24646316
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Silver overlayer-modified surface-enhanced Raman scattering-active gold substrates for potential applications in trace detection of biochemical species.
    Ou KL; Hsu TC; Liu YC; Yang KH; Tsai HY
    Anal Chim Acta; 2014 Jan; 806():188-96. PubMed ID: 24331055
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Performance-enhancing methods for Au film over nanosphere surface-enhanced Raman scattering substrate and melamine detection application.
    Wang JF; Wu XZ; Xiao R; Dong PT; Wang CG
    PLoS One; 2014; 9(6):e97976. PubMed ID: 24886913
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Porous Silicon Covered with Silver Nanoparticles as Surface-Enhanced Raman Scattering (SERS) Substrate for Ultra-Low Concentration Detection.
    Kosović M; Balarin M; Ivanda M; Đerek V; Marciuš M; Ristić M; Gamulin O
    Appl Spectrosc; 2015 Dec; 69(12):1417-24. PubMed ID: 26556231
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sensitive and Reproducible Gold SERS Sensor Based on Interference Lithography and Electrophoretic Deposition.
    Hwang JS; Yang M
    Sensors (Basel); 2018 Nov; 18(11):. PubMed ID: 30469441
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ag triangle nanoplates assembled on PVC/SEBS membrane as flexible SERS substrates for skin cortisol sensing.
    Weng G; Yang J; Li J; Zhu J; Zhao J
    Spectrochim Acta A Mol Biomol Spectrosc; 2023 Dec; 303():123154. PubMed ID: 37478705
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 3D aluminum/silver hierarchical nanostructure with large areas of dense hot spots for surface-enhanced raman scattering.
    Zhao N; Li H; Xie Y; Feng Z; Wang Z; Yang Z; Yan X; Wang W; Tian C; Yu H
    Electrophoresis; 2019 Dec; 40(23-24):3123-3131. PubMed ID: 31576580
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tailored surface-enhanced Raman nanopillar arrays fabricated by laser-assisted replication for biomolecular detection using organic semiconductor lasers.
    Liu X; Lebedkin S; Besser H; Pfleging W; Prinz S; Wissmann M; Schwab PM; Nazarenko I; Guttmann M; Kappes MM; Lemmer U
    ACS Nano; 2015 Jan; 9(1):260-70. PubMed ID: 25514354
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Surface-enhanced Raman scattering: realization of localized surface plasmon resonance using unique substrates and methods.
    Hossain MK; Kitahama Y; Huang GG; Han X; Ozaki Y
    Anal Bioanal Chem; 2009 Aug; 394(7):1747-60. PubMed ID: 19384546
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rapid Fabrication of a Flexible and Transparent Ag Nanocubes@PDMS Film as a SERS Substrate with High Performance.
    Li L; Chin WS
    ACS Appl Mater Interfaces; 2020 Aug; 12(33):37538-37548. PubMed ID: 32701289
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Silver Nanopillar Arrayed Thin Films with Highly Surface-Enhanced Raman Scattering for Ultrasensitive Detection.
    Zhang W; Zhu X; Chen Z; Belotelov VI; Song Y
    ACS Omega; 2022 Jul; 7(29):25726-25731. PubMed ID: 35910149
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transparent and Flexible Surface-Enhanced Raman Scattering (SERS) Sensors Based on Gold Nanostar Arrays Embedded in Silicon Rubber Film.
    Park S; Lee J; Ko H
    ACS Appl Mater Interfaces; 2017 Dec; 9(50):44088-44095. PubMed ID: 29172436
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hybrid Surface-Enhanced Raman Scattering Substrates for the Trace Detection of Ammonium Nitrate, Thiram, and Nile Blue.
    Rathod J; Byram C; Kanaka RK; Sree Satya Bharati M; Banerjee D; Akkanaboina M; Soma VR
    ACS Omega; 2022 May; 7(18):15969-15981. PubMed ID: 35571848
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Plasmonic Superstructure Arrays Fabricated by Laser Near-Field Reduction for Wide-Range SERS Analysis of Fluorescent Materials.
    Bai S; Hu A; Hu Y; Ma Y; Obata K; Sugioka K
    Nanomaterials (Basel); 2022 Mar; 12(6):. PubMed ID: 35335783
    [TBL] [Abstract][Full Text] [Related]  

  • 16. On-demand nanoparticle-on-mirror (NPoM) structure for cost-effective surface-enhanced Raman scattering substrates.
    Barik P; Pal S; Pradhan M
    Spectrochim Acta A Mol Biomol Spectrosc; 2021 Dec; 263():120193. PubMed ID: 34314969
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Face-to-Face Assembly of Ag Nanoplates on Filter Papers for Pesticide Detection by Surface-Enhanced Raman Spectroscopy.
    Jiao S; Liu Y; Wang S; Wang S; Ma F; Yuan H; Zhou H; Zheng G; Zhang Y; Dai K; Liu C
    Nanomaterials (Basel); 2022 Apr; 12(9):. PubMed ID: 35564107
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Investigation of simultaneously existed Raman scattering enhancement and inhibiting fluorescence using surface modified gold nanostars as SERS probes.
    Shan F; Zhang XY; Fu XC; Zhang LJ; Su D; Wang SJ; Wu JY; Zhang T
    Sci Rep; 2017 Jul; 7(1):6813. PubMed ID: 28754959
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Preparation of gold nano-cones as surface-enhanced Raman scattering sensors for molecule detection.
    Yang Y; Huang Z; Nogami M; Tanemura M; Yamaguchi K; Li ZY; Zhou F; Huang YP
    J Nanosci Nanotechnol; 2011 Dec; 11(12):10930-4. PubMed ID: 22409028
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Superhydrophobic surface-enhanced Raman scattering platform fabricated by assembly of Ag nanocubes for trace molecular sensing.
    Lee HK; Lee YH; Zhang Q; Phang IY; Tan JM; Cui Y; Ling XY
    ACS Appl Mater Interfaces; 2013 Nov; 5(21):11409-18. PubMed ID: 24134617
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.