These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 38715718)

  • 1. Effects of phantom microstructure on their optical properties.
    Stergar J; Hren R; Milanič M
    J Biomed Opt; 2024 Sep; 29(9):093502. PubMed ID: 38715718
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optical properties of PlatSil SiliGlass tissue-mimicking phantoms.
    Naglič P; Zelinskyi Y; Rogelj L; Stergar J; Milanič M; Novak J; Kumperščak B; Bürmen M
    Biomed Opt Express; 2020 Jul; 11(7):3753-3768. PubMed ID: 33014564
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Monte Carlo-based inverse model for calculating tissue optical properties. Part I: Theory and validation on synthetic phantoms.
    Palmer GM; Ramanujam N
    Appl Opt; 2006 Feb; 45(5):1062-71. PubMed ID: 16512550
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Accuracy of retrieving optical properties from liquid tissue phantoms using a single integrating sphere.
    Vincely VD; Vishwanath K
    Appl Opt; 2022 Jan; 61(2):375-385. PubMed ID: 35200872
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Solid phantom recipe for diffuse optics in biophotonics applications: a step towards anatomically correct 3D tissue phantoms.
    Sekar SKV; Pacheco A; Martella P; Li H; Lanka P; Pifferi A; Andersson-Engels S
    Biomed Opt Express; 2019 Apr; 10(4):2090-2100. PubMed ID: 31061772
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Experimental validation of Monte Carlo modeling of fluorescence in tissues in the UV-visible spectrum.
    Liu Q; Zhu C; Ramanujam N
    J Biomed Opt; 2003 Apr; 8(2):223-36. PubMed ID: 12683848
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Experimental validation of a spectroscopic Monte Carlo light transport simulation technique and Raman scattering depth sensing analysis in biological tissue.
    Akbarzadeh A; Edjlali E; Sheehy G; Selb J; Agarwal R; Weber J; Leblond F
    J Biomed Opt; 2020 Oct; 25(10):. PubMed ID: 33111509
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Preparation of solid phantoms with defined scattering and absorption properties for optical tomography.
    Sukowski U; Schubert F; Grosenick D; Rinneberg H
    Phys Med Biol; 1996 Sep; 41(9):1823-44. PubMed ID: 8884914
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tissue-mimicking bladder wall phantoms for evaluating acoustic radiation force-optical coherence elastography systems.
    Ejofodomi OA; Zderic V; Zara JM
    Med Phys; 2010 Apr; 37(4):1440-8. PubMed ID: 20443465
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lung tissue phantom mimicking pulmonary optical properties, relative humidity, and temperature: a tool to analyze the changes in oxygen gas absorption for different inflated volumes.
    Pacheco A; Grygoryev K; Messina W; Andersson-Engels S
    J Biomed Opt; 2021 Nov; 27(7):. PubMed ID: 34725995
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Deformable and durable phantoms with controlled density of scatterers.
    Bisaillon CE; Lamouche G; Maciejko R; Dufour M; Monchalin JP
    Phys Med Biol; 2008 Jul; 53(13):N237-47. PubMed ID: 18560050
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Validation of quantitative attenuation and backscattering coefficient measurements by optical coherence tomography in the concentration-dependent and multiple scattering regime.
    Almasian M; Bosschaart N; van Leeuwen TG; Faber DJ
    J Biomed Opt; 2015; 20(12):121314. PubMed ID: 26720868
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Improved accuracy in time-resolved diffuse reflectance spectroscopy.
    Alerstam E; Andersson-Engels S; Svensson T
    Opt Express; 2008 Jul; 16(14):10440-54. PubMed ID: 18607457
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Analysis of relative error in perturbation Monte Carlo simulations of radiative transport.
    Parsanasab M; Hayakawa C; Spanier J; Shen Y; Venugopalan V
    J Biomed Opt; 2023 Jun; 28(6):065001. PubMed ID: 37293394
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reference optical phantoms for diffuse optical spectroscopy. Part 1--Error analysis of a time resolved transmittance characterization method.
    Bouchard JP; Veilleux I; Jedidi R; Noiseux I; Fortin M; Mermut O
    Opt Express; 2010 May; 18(11):11495-507. PubMed ID: 20589010
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Merging Mie solutions and the radiative transport equation to measure optical properties of scattering particles in optical phantoms.
    Baez-Castillo L; Ortiz-Rascón E; Bruce NC; Garduño-Mejía J; Carrillo-Torres RC; Álvarez-Ramos ME
    Appl Opt; 2020 Nov; 59(33):10591-10598. PubMed ID: 33361994
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optical absorption and scattering properties of bulk porcine muscle phantoms from interstitial radiance measurements in 650-900 nm range.
    Grabtchak S; Montgomery LG; Whelan WM
    Phys Med Biol; 2014 May; 59(10):2431-44. PubMed ID: 24743553
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Agarose-based Tissue Mimicking Optical Phantoms for Diffuse Reflectance Spectroscopy.
    Mustari A; Nishidate I; Wares MA; Maeda T; Kawauchi S; Sato S; Sato M; Aizu Y
    J Vis Exp; 2018 Aug; (138):. PubMed ID: 30199019
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Collimator scatter factor: Monte Carlo and in-air measurements approaches.
    Fogliata A; Stravato A; Reggiori G; Tomatis S; Würfel J; Scorsetti M; Cozzi L
    Radiat Oncol; 2018 Jul; 13(1):126. PubMed ID: 29996873
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nanoparticle-free tissue-mimicking phantoms with intrinsic scattering.
    Wróbel MS; Popov AP; Bykov AV; Tuchin VV; Jędrzejewska-Szczerska M
    Biomed Opt Express; 2016 Jun; 7(6):2088-94. PubMed ID: 27375928
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.