These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 38715720)

  • 1. Intraspecific Variation in the Placement of Campaniform Sensilla on the Wings of the Hawkmoth
    Stanchak KE; Deora T; Weber AI; Hickner MK; Moalin A; Abdalla L; Daniel TL; Brunton BW
    Integr Org Biol; 2024; 6(1):obae007. PubMed ID: 38715720
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Intraspecific variation in the placement of campaniform sensilla on the wings of the hawkmoth
    Stanchak KE; Deora T; Weber AI; Hickner MK; Moalin A; Abdalla L; Daniel TL; Brunton BW
    bioRxiv; 2023 Jun; ():. PubMed ID: 37425819
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Neural evidence supports a dual sensory-motor role for insect wings.
    Pratt B; Deora T; Mohren T; Daniel T
    Proc Biol Sci; 2017 Sep; 284(1862):. PubMed ID: 28904136
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Gyroscopic sensing in the wings of the hawkmoth Manduca sexta: the role of sensor location and directional sensitivity.
    Hinson BT; Morgansen KA
    Bioinspir Biomim; 2015 Oct; 10(5):056013. PubMed ID: 26440705
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Control of moth flight posture is mediated by wing mechanosensory feedback.
    Dickerson BH; Aldworth ZN; Daniel TL
    J Exp Biol; 2014 Jul; 217(Pt 13):2301-8. PubMed ID: 24737754
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spatial distribution of campaniform sensilla mechanosensors on wings: form, function, and phylogeny.
    Aiello BR; Stanchak KE; Weber AI; Deora T; Sponberg S; Brunton BW
    Curr Opin Insect Sci; 2021 Dec; 48():8-17. PubMed ID: 34175464
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Into thin air: Contributions of aerodynamic and inertial-elastic forces to wing bending in the hawkmoth Manduca sexta.
    Combes SA; Daniel TL
    J Exp Biol; 2003 Sep; 206(Pt 17):2999-3006. PubMed ID: 12878668
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Central projections of the wing afferents in the hawkmoth, Agrius convolvuli.
    Ando N; Wang H; Shirai K; Kiguchi K; Kanzaki R
    J Insect Physiol; 2011 Nov; 57(11):1518-36. PubMed ID: 21867710
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lehr's fields of campaniform sensilla in beetles (Coleoptera): functional morphology. II. Wing reduction and the sensory field.
    Frantsevich L; Gorb S; Radchenko V; Gladun D; Polilov A; Cherney L; Browdy V; Kovalev M
    Arthropod Struct Dev; 2015 Jan; 44(1):1-9. PubMed ID: 25449977
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Flexural stiffness in insect wings. II. Spatial distribution and dynamic wing bending.
    Combes SA; Daniel TL
    J Exp Biol; 2003 Sep; 206(Pt 17):2989-97. PubMed ID: 12878667
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A new twist on gyroscopic sensing: body rotations lead to torsion in flapping, flexing insect wings.
    Eberle AL; Dickerson BH; Reinhall PG; Daniel TL
    J R Soc Interface; 2015 Mar; 12(104):20141088. PubMed ID: 25631565
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hawkmoths regulate flight torques with their abdomen for yaw control.
    Le V; Cellini B; Schilder R; Mongeau JM
    J Exp Biol; 2023 May; 226(9):. PubMed ID: 36995279
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Haltere morphology and campaniform sensilla arrangement across Diptera.
    Agrawal S; Grimaldi D; Fox JL
    Arthropod Struct Dev; 2017 Mar; 46(2):215-229. PubMed ID: 28161605
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of stretch receptor ablation on the optomotor control of lift in the hawkmoth Manduca sexta.
    Frye MA
    J Exp Biol; 2001 Nov; 204(Pt 21):3683-91. PubMed ID: 11719532
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Aerodynamic performance of a hovering hawkmoth with flexible wings: a computational approach.
    Nakata T; Liu H
    Proc Biol Sci; 2012 Feb; 279(1729):722-31. PubMed ID: 21831896
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Location and arrangement of campaniform sensilla in Drosophila melanogaster.
    Dinges GF; Chockley AS; Bockemühl T; Ito K; Blanke A; Büschges A
    J Comp Neurol; 2021 Mar; 529(4):905-925. PubMed ID: 32678470
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nonuniform structural properties of wings confer sensing advantages.
    Weber AI; Babaei M; Mamo A; Brunton BW; Daniel TL; Bergbreiter S
    J R Soc Interface; 2023 Mar; 20(200):20220765. PubMed ID: 36946090
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The hawkmoth wingbeat is not at resonance.
    Gau J; Wold ES; Lynch J; Gravish N; Sponberg S
    Biol Lett; 2022 May; 18(5):20220063. PubMed ID: 35611583
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Asymmetry costs: effects of wing damage on hovering flight performance in the hawkmoth
    Fernández MJ; Driver ME; Hedrick TL
    J Exp Biol; 2017 Oct; 220(Pt 20):3649-3656. PubMed ID: 28794226
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Wing structure and neural encoding jointly determine sensing strategies in insect flight.
    Weber AI; Daniel TL; Brunton BW
    PLoS Comput Biol; 2021 Aug; 17(8):e1009195. PubMed ID: 34379622
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.