These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 38716565)

  • 1. Inverting a model of neuromuscular control to estimate descending activation patterns that generate fast-reaching movements.
    Hummert C; Zhang L; Schöner G
    J Neurophysiol; 2024 Jun; 131(6):1271-1285. PubMed ID: 38716565
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Estimating the time structure of descending activation that generates movements at different speeds.
    Ramadan R; Hummert C; Jokeit JS; Schöner G
    J Neurophysiol; 2022 Nov; 128(5):1091-1105. PubMed ID: 36102537
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Central modifications of reflex parameters may underlie the fastest arm movements.
    Adamovich SV; Levin MF; Feldman AG
    J Neurophysiol; 1997 Mar; 77(3):1460-9. PubMed ID: 9084611
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The timing of control signals underlying fast point-to-point arm movements.
    Ghafouri M; Feldman AG
    Exp Brain Res; 2001 Apr; 137(3-4):411-23. PubMed ID: 11355386
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Are complex control signals required for human arm movement?
    Gribble PL; Ostry DJ; Sanguineti V; Laboissière R
    J Neurophysiol; 1998 Mar; 79(3):1409-24. PubMed ID: 9497421
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of movement speed on accuracy and coordination of reaching movements to memorized targets in three-dimensional space in a deafferented subject.
    Messier J; Adamovich S; Berkinblit M; Tunik E; Poizner H
    Exp Brain Res; 2003 Jun; 150(4):399-416. PubMed ID: 12739083
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A neuromuscular model of human locomotion combines spinal reflex circuits with voluntary movements.
    Ramadan R; Geyer H; Jeka J; Schöner G; Reimann H
    Sci Rep; 2022 May; 12(1):8189. PubMed ID: 35581211
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Control processes underlying elbow flexion movements may be independent of kinematic and electromyographic patterns: experimental study and modelling.
    St-Onge N; Adamovich SV; Feldman AG
    Neuroscience; 1997 Jul; 79(1):295-316. PubMed ID: 9178885
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Similar movements are associated with drastically different muscle contraction velocities.
    Hagen DA; Valero-Cuevas FJ
    J Biomech; 2017 Jul; 59():90-100. PubMed ID: 28619447
    [TBL] [Abstract][Full Text] [Related]  

  • 10. On the voluntary movement of compliant (inertial-viscoelastic) loads by parcellated control mechanisms.
    Gottlieb GL
    J Neurophysiol; 1996 Nov; 76(5):3207-29. PubMed ID: 8930267
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cerebellar ataxia: abnormal control of interaction torques across multiple joints.
    Bastian AJ; Martin TA; Keating JG; Thach WT
    J Neurophysiol; 1996 Jul; 76(1):492-509. PubMed ID: 8836239
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Postural maintenance during movement: simulations of a two joint model.
    Ramos CF; Stark LW
    Biol Cybern; 1990; 63(5):363-75. PubMed ID: 2223895
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nonlinear stretch reflex interaction during cocontraction.
    Carter RR; Crago PE; Gorman PH
    J Neurophysiol; 1993 Mar; 69(3):943-52. PubMed ID: 8385202
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interaction of pre-programmed control and natural stretch reflexes in human landing movements.
    McDonagh MJ; Duncan A
    J Physiol; 2002 Nov; 544(3):985-94. PubMed ID: 12411541
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Decoupling of stretch reflex and background muscle activity during anticipatory postural adjustments in humans.
    Vedula S; Kearney RE; Wagner R; Stapley PJ
    Exp Brain Res; 2010 Aug; 205(2):205-13. PubMed ID: 20625702
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Internal models of limb dynamics and the encoding of limb state.
    Hwang EJ; Shadmehr R
    J Neural Eng; 2005 Sep; 2(3):S266-78. PubMed ID: 16135889
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Feedforward and Feedback Control Share an Internal Model of the Arm's Dynamics.
    Maeda RS; Cluff T; Gribble PL; Pruszynski JA
    J Neurosci; 2018 Dec; 38(49):10505-10514. PubMed ID: 30355628
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanical and neural stretch responses of the human soleus muscle at different walking speeds.
    Cronin NJ; Ishikawa M; Grey MJ; af Klint R; Komi PV; Avela J; Sinkjaer T; Voigt M
    J Physiol; 2009 Jul; 587(Pt 13):3375-82. PubMed ID: 19451207
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Contributions to the understanding of gait control.
    Simonsen EB
    Dan Med J; 2014 Apr; 61(4):B4823. PubMed ID: 24814597
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Generalizing movement patterns following shoulder fixation.
    Maeda RS; Zdybal JM; Gribble PL; Pruszynski JA
    J Neurophysiol; 2020 Mar; 123(3):1193-1205. PubMed ID: 32101490
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.