BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 38716688)

  • 1. Lattice thermal conductivity of ZnO: experimental and theoretical studies.
    Dash S; Padhan P
    Phys Chem Chem Phys; 2024 May; 26(20):14754-14765. PubMed ID: 38716688
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lattice thermal conductivity of topological insulator Bi
    K E V; Kumar Das S; Padhan P
    Phys Chem Chem Phys; 2023 May; 25(19):13577-13586. PubMed ID: 37139687
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The first-principles and BTE investigation of phonon transport in 1T-TiSe
    Wang ZL; Chen G; Zhang X; Tang D
    Phys Chem Chem Phys; 2021 Jan; 23(2):1627-1638. PubMed ID: 33410842
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High and Anomalous Thermal Conductivity in Monolayer MSi
    Yin Y; Yi M; Guo W
    ACS Appl Mater Interfaces; 2021 Sep; 13(38):45907-45915. PubMed ID: 34523910
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-Throughput Screening of Rattling-Induced Ultralow Lattice Thermal Conductivity in Semiconductors.
    Li J; Hu W; Yang J
    J Am Chem Soc; 2022 Mar; 144(10):4448-4456. PubMed ID: 35230828
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thermal Conductivity of Wurtzite Zinc-Oxide from First-Principles Lattice Dynamics--a Comparative Study with Gallium Nitride.
    Wu X; Lee J; Varshney V; Wohlwend JL; Roy AK; Luo T
    Sci Rep; 2016 Mar; 6():22504. PubMed ID: 26928396
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ultralow Thermal Conductivity of a Chalcogenide System Pt
    Wang R; Liang F; Zhang X; Zhao C; Fang Y; Zheng C; Huang F
    J Am Chem Soc; 2024 Mar; 146(11):7352-7362. PubMed ID: 38447048
    [TBL] [Abstract][Full Text] [Related]  

  • 8. First-principles prediction of the thermal conductivity of two configurations of difluorinated graphene monolayer.
    Chen A; Tong H; Wu CW; Li SY; Jia PZ; Zhou WX
    Phys Chem Chem Phys; 2023 Dec; 26(1):421-429. PubMed ID: 38078535
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ultralow lattice thermal conductivity of binary compounds A
    Zeng S; Fang L; Tu Y; Zulfiqar M; Li G
    Phys Chem Chem Phys; 2023 May; 25(17):12157-12164. PubMed ID: 37070719
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Physical Insights on the Thermoelectric Performance of Cs
    Zeng X; Jiang J; Niu G; Sui L; Zhang Y; Wang X; Liu X; Chen A; Jin M; Yuan K
    J Phys Chem Lett; 2022 Oct; 13(41):9736-9744. PubMed ID: 36222621
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparative investigation of the thermal transport properties of Janus SnSSe and SnS
    Liu G; Wang H; Gao Z; Li GL
    Phys Chem Chem Phys; 2020 Aug; 22(29):16796-16803. PubMed ID: 32662487
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Anharmonic phonon frequency and ultralow lattice thermal conductivity in β-Cu
    Zhang W; Zheng C; Dong Y; Yang JY; Liu L
    Phys Chem Chem Phys; 2020 Dec; 22(48):28086-28092. PubMed ID: 33289745
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Significant improvement in thermoelectric performance of SnSe/SnS
    Zhang R; Zhou Z; Yao Q; Qi N; Chen Z
    Phys Chem Chem Phys; 2021 Feb; 23(6):3794-3801. PubMed ID: 33533354
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thermoelectric transport properties of orthorhombic RbBaX (X = Sb, Bi) with strong anharmonicity.
    Song X; Zhao Y; He M; Ni J; Meng S; Dai Z
    J Chem Phys; 2023 Jan; 158(1):014107. PubMed ID: 36610964
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tweaking the Physics of Interfaces between Monolayers of Buckled Cadmium Sulfide for a Superhigh Piezoelectricity, Excitonic Solar Cell Efficiency, and Thermoelectricity.
    Mohanta MK; Sarkar A
    ACS Appl Mater Interfaces; 2020 Apr; 12(15):18123-18137. PubMed ID: 32223217
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Unusually low thermal conductivity of atomically thin 2D tellurium.
    Gao Z; Tao F; Ren J
    Nanoscale; 2018 Jul; 10(27):12997-13003. PubMed ID: 29786732
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lattice Thermal Conductivity in XMg
    Wu M; Yang H; Xie F; Huang L
    Materials (Basel); 2023 Nov; 16(23):. PubMed ID: 38068094
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phonon transport in Janus monolayer MoSSe: a first-principles study.
    Guo SD
    Phys Chem Chem Phys; 2018 Mar; 20(10):7236-7242. PubMed ID: 29484328
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phonon thermal transport in a class of graphene allotropes from first principles.
    Yang X; Dai Z; Zhao Y; Meng S
    Phys Chem Chem Phys; 2018 Jun; 20(23):15980-15985. PubMed ID: 29850727
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Thermal conductivity of skutterudite CoSb3 from first principles: Substitution and nanoengineering effects.
    Guo R; Wang X; Huang B
    Sci Rep; 2015 Jan; 5():7806. PubMed ID: 25608469
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.