BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 38716688)

  • 21. The intrinsically low lattice thermal conductivity of monolayer T-Au
    Ji Y; Chen X; Sun Z; Shen C; Wang N
    Phys Chem Chem Phys; 2023 Nov; 25(46):31781-31790. PubMed ID: 37965932
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Extremely Low Lattice Thermal Conductivity Leading to Superior Thermoelectric Performance in Cu
    Zhang T; Yu T; Ning S; Zhang Z; Qi N; Jiang M; Chen Z
    ACS Appl Mater Interfaces; 2023 Jul; 15(27):32453-32462. PubMed ID: 37368823
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Strain-Driven High Thermal Conductivity in Hexagonal Boron Phosphide Monolayer.
    Chen X; Wang G; Li B; Wang N
    Langmuir; 2024 Feb; 40(6):3095-3104. PubMed ID: 38299976
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Lattice Instability and Ultralow Lattice Thermal Conductivity of Layered PbIF.
    Yedukondalu N; Shafique A; Rakesh Roshan SC; Barhoumi M; Muthaiah R; Ehm L; Parise JB; Schwingenschlögl U
    ACS Appl Mater Interfaces; 2022 Sep; 14(36):40738-40748. PubMed ID: 36053500
    [TBL] [Abstract][Full Text] [Related]  

  • 25. High-Pressure-Sintering-Induced Microstructural Engineering for an Ultimate Phonon Scattering of Thermoelectric Half-Heusler Compounds.
    He R; Zhu T; Ying P; Chen J; Giebeler L; Kühn U; Grossman JC; Wang Y; Nielsch K
    Small; 2021 Aug; 17(33):e2102045. PubMed ID: 34235845
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Phonon transport and thermoelectric properties of semiconducting Bi
    Rashid Z; Nissimagoudar AS; Li W
    Phys Chem Chem Phys; 2019 Mar; 21(10):5679-5688. PubMed ID: 30799478
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Ultra-low lattice thermal conductivity and giant phonon-electric field coupling in hafnium dichalcogenide monolayers.
    Dimple ; Mohanta MK; Rawat A; Jena N; Ahammed R; De Sarkar A
    J Phys Condens Matter; 2020 May; 32(31):315301. PubMed ID: 32378516
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Low Lattice Thermal Conductivity in a Wider Temperature Range for Biphasic-Quaternary (Ti,V)CoSb Half-Heusler Alloys.
    Chauhan NS; Bhattacharjee D; Maiti T; Kolen'ko YV; Miyazaki Y; Bhattacharya A
    ACS Appl Mater Interfaces; 2022 Dec; 14(49):54736-54747. PubMed ID: 36450123
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Insights into Low Thermal Conductivity in Inorganic Materials for Thermoelectrics.
    Ghosh T; Dutta M; Sarkar D; Biswas K
    J Am Chem Soc; 2022 Jun; 144(23):10099-10118. PubMed ID: 35652915
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Low lattice thermal conductivities and good thermoelectric performance of hexagonal antiperovskites X(Ba & Sr)
    Zeng S; Yan X; Shen Q; Tu Y; Huang H; Li G
    Phys Chem Chem Phys; 2023 Oct; 25(39):26507-26514. PubMed ID: 37782050
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Thermal conductivity across transition metal dichalcogenide bilayers.
    de Vries IF; Osthues H; Doltsinis NL
    iScience; 2023 Apr; 26(4):106447. PubMed ID: 37063471
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Lone-Electron-Pair Micelles Strengthen Bond Anharmonicity in MnPb
    Dawahre L; Lu R; Djieutedjeu H; Lopez J; Bailey TP; Buchanan B; Yin Z; Uher C; Poudeu PFP
    ACS Appl Mater Interfaces; 2020 Oct; 12(40):44991-44997. PubMed ID: 32902948
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Ultralow lattice thermal conductivity at room temperature in 2D KCuSe from first-principles calculations.
    Xu Z; Wang C; Wu X; Hu L; Liu Y; Gao G
    Phys Chem Chem Phys; 2022 Feb; 24(5):3296-3302. PubMed ID: 35050286
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Phonon Dynamics and Transport Properties of Copper Thiocyanate and Copper Selenocyanate Pseudohalides.
    Singh N; Anjum D; Das G; Qattan I; Patole S; Sajjad M
    ACS Omega; 2020 Nov; 5(44):28637-28642. PubMed ID: 33195916
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Simultaneous Enhancement of the Power Factor and Phonon Blocking in Nb-Doped WSe
    Danish MH; Yang S; Ming H; Chen T; Wang Q; Zhang J; Li D; Li Z; Qin X
    ACS Appl Mater Interfaces; 2023 May; 15(18):22167-22175. PubMed ID: 37125742
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Nonmonotonic strain dependence of lattice thermal conductivity in monolayer SiC: a first-principles study.
    Guo SD; Dong J; Liu JT
    Phys Chem Chem Phys; 2018 Aug; 20(34):22038-22046. PubMed ID: 30112534
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Predicting the Lattice Thermal Conductivity in Nitride Perovskite LaWN
    Tong Z; Zhang Y; Pecchia A; Yam C; Zhou L; Dumitrică T; Frauenheim T
    Adv Sci (Weinh); 2023 Mar; 10(9):e2205934. PubMed ID: 36683244
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Superhigh out-of-plane piezoelectricity, low thermal conductivity and photocatalytic abilities in ultrathin 2D van der Waals heterostructures of boron monophosphide and gallium nitride.
    Mohanta MK; Rawat A; Dimple ; Jena N; Ahammed R; De Sarkar A
    Nanoscale; 2019 Nov; 11(45):21880-21890. PubMed ID: 31697290
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Intrinsic Thermal conductivities of monolayer transition metal dichalcogenides MX
    Zulfiqar M; Zhao Y; Li G; Li Z; Ni J
    Sci Rep; 2019 Mar; 9(1):4571. PubMed ID: 30872639
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Drastic Modification of Lattice Thermal Conductivity in Thermoelectrics Induced by Electron-Hole Pairs.
    An Q
    ACS Appl Mater Interfaces; 2021 Jan; 13(3):3911-3918. PubMed ID: 33438996
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.