BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 38716830)

  • 1. Screening Splice-Switching Antisense Oligonucleotides in Pancreas-Cancer Organoids.
    Wan L; Kral AJ; Voss D; Schäfer B; Sudheendran K; Danielsen M; Caruthers MH; Krainer AR
    Nucleic Acid Ther; 2024 May; ():. PubMed ID: 38716830
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Preclinical Screening of Splice-Switching Antisense Oligonucleotides in PDAC Organoids.
    Wan L; Kral AJ; Voss D; Krainer AR
    bioRxiv; 2023 Apr; ():. PubMed ID: 37066201
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A patient-derived organoid-based study identified an ASO targeting SNORD14E for endometrial cancer through reducing aberrant FOXM1 Expression and β-catenin nuclear accumulation.
    Chen X; Liu X; Li QH; Lu BF; Xie BM; Ji YM; Zhao Y
    J Exp Clin Cancer Res; 2023 Sep; 42(1):230. PubMed ID: 37667311
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hybridization-mediated off-target effects of splice-switching antisense oligonucleotides.
    Scharner J; Ma WK; Zhang Q; Lin KT; Rigo F; Bennett CF; Krainer AR
    Nucleic Acids Res; 2020 Jan; 48(2):802-816. PubMed ID: 31802121
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Investigation of the regulatory effects of synthesized antisense oligonucleotides on androgen receptor (AR) exon 3 splicing in prostate cancer cells.
    Wang L; Gong S; Zhang X; Azhar Z; Chen J
    Gene; 2023 May; 866():147330. PubMed ID: 36871670
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Antisense Oligonucleotides: An Emerging Area in Drug Discovery and Development.
    Dhuri K; Bechtold C; Quijano E; Pham H; Gupta A; Vikram A; Bahal R
    J Clin Med; 2020 Jun; 9(6):. PubMed ID: 32604776
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Repair of aberrant splicing in growth hormone receptor by antisense oligonucleotides targeting the splice sites of a pseudoexon.
    David A; Srirangalingam U; Metherell LA; Khoo B; Clark AJ
    J Clin Endocrinol Metab; 2010 Jul; 95(7):3542-6. PubMed ID: 20427506
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Deep screening of proximal and distal splicing-regulatory elements in a native sequence context.
    Recinos Y; Ustianenko D; Yeh YT; Wang X; Jacko M; Yesantharao LV; Wu Q; Zhang C
    bioRxiv; 2023 Aug; ():. PubMed ID: 37662340
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Splice-Modulating Antisense Oligonucleotides as Therapeutics for Inherited Metabolic Diseases.
    Chen S; Heendeniya SN; Le BT; Rahimizadeh K; Rabiee N; Zahra QUA; Veedu RN
    BioDrugs; 2024 Mar; 38(2):177-203. PubMed ID: 38252341
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Overcoming imatinib resistance conferred by the
    Liu J; Bhadra M; Sinnakannu JR; Yue WL; Tan CW; Rigo F; Ong ST; Roca X
    Oncotarget; 2017 Sep; 8(44):77567-77585. PubMed ID: 29100409
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cerebral Organoids and Antisense Oligonucleotide Therapeutics: Challenges and Opportunities.
    Lange J; Zhou H; McTague A
    Front Mol Neurosci; 2022; 15():941528. PubMed ID: 35836547
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Delivery of GalNAc-Conjugated Splice-Switching ASOs to Non-hepatic Cells through Ectopic Expression of Asialoglycoprotein Receptor.
    Scharner J; Qi S; Rigo F; Bennett CF; Krainer AR
    Mol Ther Nucleic Acids; 2019 Jun; 16():313-325. PubMed ID: 30965276
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Application of a Quality-By-Design Approach to Optimise Lipid-Polymer Hybrid Nanoparticles Loaded with a Splice-Correction Antisense Oligonucleotide: Maximising Loading and Intracellular Delivery.
    Thanki K; Papai S; Lokras A; Rose F; Falkenberg E; Franzyk H; Foged C
    Pharm Res; 2019 Jan; 36(3):37. PubMed ID: 30623253
    [TBL] [Abstract][Full Text] [Related]  

  • 14. ASO-Based PKM Splice-Switching Therapy Inhibits Hepatocellular Carcinoma Growth.
    Ma WK; Voss DM; Scharner J; Costa ASH; Lin KT; Jeon HY; Wilkinson JE; Jackson M; Rigo F; Bennett CF; Krainer AR
    Cancer Res; 2022 Mar; 82(5):900-915. PubMed ID: 34921016
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Formulation and delivery of splice-correction antisense oligonucleotides by amino acid modified polyethylenimine.
    Zaghloul EM; Viola JR; Zuber G; Smith CI; Lundin KE
    Mol Pharm; 2010 Jun; 7(3):652-63. PubMed ID: 20128628
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Aberrant RNA Splicing in Cancer and Drug Resistance.
    Wang BD; Lee NH
    Cancers (Basel); 2018 Nov; 10(11):. PubMed ID: 30463359
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rescue of mis-splicing of a common
    Feng P; Xu Z; Chen J; Liu M; Zhao Y; Wang D; Han L; Wang L; Wan B; Xu X; Li D; Shu Y; Hua Y
    Mol Ther Nucleic Acids; 2022 Jun; 28():280-292. PubMed ID: 35433113
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Antisense oligonucleotide-based drug development for Cystic Fibrosis patients carrying the 3849+10 kb C-to-T splicing mutation.
    Oren YS; Irony-Tur Sinai M; Golec A; Barchad-Avitzur O; Mutyam V; Li Y; Hong J; Ozeri-Galai E; Hatton A; Leibson C; Carmel L; Reiter J; Sorscher EJ; Wilton SD; Kerem E; Rowe SM; Sermet-Gaudelus I; Kerem B
    J Cyst Fibros; 2021 Sep; 20(5):865-875. PubMed ID: 34226157
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Antisense Oligonucleotide-Mediated Splice Switching: Potential Therapeutic Approach for Cancer Mitigation.
    Raguraman P; Balachandran AA; Chen S; Diermeier SD; Veedu RN
    Cancers (Basel); 2021 Nov; 13(21):. PubMed ID: 34771719
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Exploiting differential RNA splicing patterns: a potential new group of therapeutic targets in cancer.
    Jyotsana N; Heuser M
    Expert Opin Ther Targets; 2018 Feb; 22(2):107-121. PubMed ID: 29235382
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.