These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 38716851)

  • 1. Spectroscopic analysis of the sum-frequency response of the carbon-hydrogen stretching modes in collagen type I.
    Luna Palacios YY; Khandani S; Garcia EP; Chen A; Wang S; Roy K; Knez D; Kim DA; Rocha-Mendoza I; Potma EO
    J Chem Phys; 2024 May; 160(18):. PubMed ID: 38716851
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Polarization-sensitive sum-frequency generation microscopy of collagen fibers.
    Han Y; Hsu J; Ge NH; Potma EO
    J Phys Chem B; 2015 Feb; 119(8):3356-65. PubMed ID: 25614936
    [TBL] [Abstract][Full Text] [Related]  

  • 3. C-H stretching vibrations of methyl, methylene and methine groups at the vapor/alcohol (N = 1-8) interfaces.
    Lu R; Gan W; Wu BH; Zhang Z; Guo Y; Wang HF
    J Phys Chem B; 2005 Jul; 109(29):14118-29. PubMed ID: 16852773
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Orientation determination of protein helical secondary structures using linear and nonlinear vibrational spectroscopy.
    Nguyen KT; Le Clair SV; Ye S; Chen Z
    J Phys Chem B; 2009 Sep; 113(36):12169-80. PubMed ID: 19650636
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Wetting effect on optical sum frequency generation (SFG) spectra of d-glucose, d-fructose, and sucrose.
    Hieu HC; Li H; Miyauchi Y; Mizutani G; Fujita N; Nakamura Y
    Spectrochim Acta A Mol Biomol Spectrosc; 2015 Mar; 138():834-9. PubMed ID: 25582568
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular dynamics simulation of liquid methanol. II. Unified assignment of infrared, Raman, and sum frequency generation vibrational spectra in methyl C-H stretching region.
    Ishiyama T; Sokolov VV; Morita A
    J Chem Phys; 2011 Jan; 134(2):024510. PubMed ID: 21241123
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of starch polymorphic structures using vibrational sum frequency generation spectroscopy.
    Kong L; Lee C; Kim SH; Ziegler GR
    J Phys Chem B; 2014 Feb; 118(7):1775-83. PubMed ID: 24432980
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Early sum frequency generation vibrational spectroscopic studies on peptides and proteins at interfaces.
    Chen Z
    Biointerphases; 2022 May; 17(3):031202. PubMed ID: 35525602
    [TBL] [Abstract][Full Text] [Related]  

  • 9. N-H stretching modes around 3300 wavenumber from peptide backbones observed by chiral sum frequency generation vibrational spectroscopy.
    Fu L; Wang Z; Yan EC
    Chirality; 2014 Sep; 26(9):521-4. PubMed ID: 24610602
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Determination of collagen nanostructure from second-order susceptibility tensor analysis.
    Su PJ; Chen WL; Chen YF; Dong CY
    Biophys J; 2011 Apr; 100(8):2053-62. PubMed ID: 21504742
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Polarization and experimental configuration analyses of sum frequency generation vibrational spectra, structure, and orientational motion of the air/water interface.
    Gan W; Wu D; Zhang Z; Feng RR; Wang HF
    J Chem Phys; 2006 Mar; 124(11):114705. PubMed ID: 16555908
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sum-frequency-generation vibration spectroscopy and density functional theory calculations with dispersion corrections (DFT-D2) for cellulose Iα and Iβ.
    Lee CM; Mohamed NM; Watts HD; Kubicki JD; Kim SH
    J Phys Chem B; 2013 Jun; 117(22):6681-92. PubMed ID: 23738844
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dependence of glycine CH2 stretching frequencies on conformation, ionization state, and hydrogen bonding.
    Bykov SV; Myshakina NS; Asher SA
    J Phys Chem B; 2008 May; 112(18):5803-12. PubMed ID: 18447350
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Theoretical Sum Frequency Generation Spectroscopy of Peptides.
    Carr JK; Wang L; Roy S; Skinner JL
    J Phys Chem B; 2015 Jul; 119(29):8969-83. PubMed ID: 25203677
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hydrogen bonding in the prism face of ice I(h) via sum frequency vibrational spectroscopy.
    Bisson PJ; Shultz MJ
    J Phys Chem A; 2013 Jul; 117(29):6116-25. PubMed ID: 23451801
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mapping molecular orientation with phase sensitive vibrationally resonant sum-frequency generation microscopy.
    Han Y; Raghunathan V; Feng RR; Maekawa H; Chung CY; Feng Y; Potma EO; Ge NH
    J Phys Chem B; 2013 May; 117(20):6149-56. PubMed ID: 23675654
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Vibrational sum-frequency generation spectroscopy at the water/lipid interface: molecular dynamics simulation study.
    Nagata Y; Mukamel S
    J Am Chem Soc; 2010 May; 132(18):6434-42. PubMed ID: 20394423
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An empirical approach to the bond additivity model in quantitative interpretation of sum frequency generation vibrational spectra.
    Wu H; Zhang WK; Gan W; Cui ZF; Wang HF
    J Chem Phys; 2006 Oct; 125(13):133203. PubMed ID: 17029450
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nonlinear optical properties of type I collagen fibers studied by polarization dependent second harmonic generation microscopy.
    Tuer AE; Krouglov S; Prent N; Cisek R; Sandkuijl D; Yasufuku K; Wilson BC; Barzda V
    J Phys Chem B; 2011 Nov; 115(44):12759-69. PubMed ID: 21970315
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comment on the carbon-hydrogen stretching region of vibrational Raman spectra of phospholipids.
    Bunow MR; Levin IW
    Biochim Biophys Acta; 1977 May; 487(2):388-94. PubMed ID: 861241
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.