These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 38716992)

  • 1. Ge-Doped Hematite with FeCoNi-B
    Wang Y; Cui S; Tian Z; Han M; Zhao T; Li W
    Small; 2024 May; ():e2400316. PubMed ID: 38716992
    [TBL] [Abstract][Full Text] [Related]  

  • 2. NiFeO
    Yoon KY; Park J; Jung M; Ji SG; Lee H; Seo JH; Kwak MJ; Il Seok S; Lee JH; Jang JH
    Nat Commun; 2021 Jul; 12(1):4309. PubMed ID: 34262036
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lowering the onset potential of Zr-doped hematite nanocoral photoanodes by Al co-doping and surface modification with electrodeposited Co-Pi.
    Jeong IK; Mahadik MA; Hwang JB; Chae WS; Choi SH; Jang JS
    J Colloid Interface Sci; 2021 Jan; 581(Pt B):751-763. PubMed ID: 32818679
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Surface Modification of Hematite Photoanodes with CeO
    Ahmed MG; Zhang M; Tay YF; Chiam SY; Wong LH
    ChemSusChem; 2020 Oct; 13(20):5489-5496. PubMed ID: 32776429
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Efficient Photoelectrochemical Water Oxidation on Hematite with Fluorine-Doped FeOOH and FeNiOOH as Dual Cocatalysts.
    Deng J; Zhang Q; Feng K; Lan H; Zhong J; Chaker M; Ma D
    ChemSusChem; 2018 Nov; 11(21):3783-3789. PubMed ID: 30215886
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An
    Kang K; Zhang H; Kim JH; Byun WJ; Lee JS
    Nanoscale Adv; 2022 Mar; 4(6):1659-1667. PubMed ID: 36134374
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Facile synthesis of an ultrathin ZIF-67 layer on the surface of Sn/Ti co-doped hematite for efficient photoelectrochemical water oxidation.
    Huang P; Miao X; Wu J; Zhang P; Zhang H; Bai S; Liu W
    Dalton Trans; 2022 Jun; 51(22):8848-8854. PubMed ID: 35621155
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of defect-rich Co-CeO
    Pal D; Maity D; Sarkar A; Sarkar D; Khan GG
    J Colloid Interface Sci; 2022 Aug; 620():209-220. PubMed ID: 35428003
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interface Engineering of CoFe-LDH Modified Ti: α-Fe
    Chang Y; Han M; Ding Y; Wei H; Zhang D; Luo H; Li X; Yan X
    Nanomaterials (Basel); 2023 Sep; 13(18):. PubMed ID: 37764609
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Surface Reconstruction of Cobalt Species on Amorphous Cobalt Silicate-Coated Fluorine-Doped Hematite for Efficient Photoelectrochemical Water Oxidation.
    Chai H; Wang P; Wang T; Gao L; Li F; Jin J
    ACS Appl Mater Interfaces; 2021 Oct; 13(40):47572-47580. PubMed ID: 34607433
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Deposition of FeOOH Layer on Ultrathin Hematite Nanoflakes to Promote Photoelectrochemical Water Splitting.
    Zhang W; Zhang Y; Miao X; Zhao L; Zhu C
    Micromachines (Basel); 2024 Mar; 15(3):. PubMed ID: 38542634
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Conformally Coupling CoAl-Layered Double Hydroxides on Fluorine-Doped Hematite: Surface and Bulk Co-Modification for Enhanced Photoelectrochemical Water Oxidation.
    Wang C; Long X; Wei S; Wang T; Li F; Gao L; Hu Y; Li S; Jin J
    ACS Appl Mater Interfaces; 2019 Aug; 11(33):29799-29806. PubMed ID: 31368692
    [TBL] [Abstract][Full Text] [Related]  

  • 13. N and Sn Co-Doped hematite photoanodes for efficient solar water oxidation.
    Jiao T; Lu C; Feng K; Deng J; Long D; Zhong J
    J Colloid Interface Sci; 2021 Mar; 585():660-667. PubMed ID: 33127051
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Balancing charge recombination and hole transfer rates in hematite photoanodes by modulating the Co
    Xiao J; Jia X; Du B; Zhong Z; Li C; Sun J; Nie Z; Zhang X; Wang B
    J Colloid Interface Sci; 2024 Jan; 654(Pt B):915-924. PubMed ID: 37898075
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Activating the surface and bulk of hematite photoanodes to improve solar water splitting.
    Zhang H; Park JH; Byun WJ; Song MH; Lee JS
    Chem Sci; 2019 Nov; 10(44):10436-10444. PubMed ID: 32110336
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Oxygen-Vacancy-Dominated Cocatalyst/Hematite Interface for Boosting Solar Water Splitting.
    Wang L; Zhu J; Liu X
    ACS Appl Mater Interfaces; 2019 Jun; 11(25):22272-22277. PubMed ID: 31244023
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Combining Bulk/Surface Engineering of Hematite To Synergistically Improve Its Photoelectrochemical Water Splitting Performance.
    Yuan Y; Gu J; Ye KH; Chai Z; Yu X; Chen X; Zhao C; Zhang Y; Mai W
    ACS Appl Mater Interfaces; 2016 Jun; 8(25):16071-7. PubMed ID: 27275649
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hematite Photoanode with Complex Nanoarchitecture Providing Tunable Gradient Doping and Low Onset Potential for Photoelectrochemical Water Splitting.
    Ahn HJ; Goswami A; Riboni F; Kment S; Naldoni A; Mohajernia S; Zboril R; Schmuki P
    ChemSusChem; 2018 Jun; 11(11):1873-1879. PubMed ID: 29644796
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Boosting Charge Transfer Efficiency by Nanofragment MXene for Efficient Photoelectrochemical Water Splitting of NiFe(OH)
    Park J; Yoon KY; Kwak MJ; Kang J; Kim S; Chaule S; Ha SJ; Jang JH
    ACS Appl Mater Interfaces; 2023 Feb; ():. PubMed ID: 36749965
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Uniform Doping of Titanium in Hematite Nanorods for Efficient Photoelectrochemical Water Splitting.
    Wang D; Chen H; Chang G; Lin X; Zhang Y; Aldalbahi A; Peng C; Wang J; Fan C
    ACS Appl Mater Interfaces; 2015 Jul; 7(25):14072-8. PubMed ID: 26052922
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.